|
|
| Line 15: |
Line 15: |
| <math>\textbf{(A) } \frac{2}{7} \qquad \textbf{(B) } \frac{5}{42} \qquad \textbf{(C) } \frac{11}{14} \qquad \textbf{(D) } \frac{5}{7} \qquad \textbf{(E) } \frac{6}{7}</math> | | <math>\textbf{(A) } \frac{2}{7} \qquad \textbf{(B) } \frac{5}{42} \qquad \textbf{(C) } \frac{11}{14} \qquad \textbf{(D) } \frac{5}{7} \qquad \textbf{(E) } \frac{6}{7}</math> |
|
| |
|
| ==Solution== | | ==Solutions== |
| ===Solution 1===
| |
| We will use constructive counting to solve this. There are <math>2</math> cases: Either all <math>3</math> points are adjacent, or exactly <math>2</math> points are adjacent.
| |
| | |
| If all <math>3</math> points are adjacent, then we have <math>8</math> choices. If we have exactly <math>2</math> adjacent points, then we will have <math>8</math> places to put the adjacent points and also <math>4</math> places to put the remaining point, so we have <math>8\cdot4</math> choices. The total amount of choices is <math>{8 \choose 3} = 8\cdot7</math>.
| |
| Thus our answer is <math>\frac{8+8\cdot4}{8\cdot7}= \frac{1+4}{7}=\boxed{\textbf{(D) } \frac 57}</math>
| |
| | |
| ===Solution 2 ===
| |
| We can decide <math>2</math> adjacent points with <math>8</math> choices. The remaining point will have <math>6</math> choices. However, we have counted the case with <math>3</math> adjacent points twice, so we need to subtract this case once. The case with the <math>3</math> adjacent points has <math>8</math> arrangements, so our answer is <math>\frac{8\cdot6-8}{{8 \choose 3 }}</math><math>=\frac{8\cdot6-8}{8 \cdot 7 \cdot 6 \div 6}\Longrightarrow\boxed{\textbf{(D) } \frac 57}</math>
| |
| | |
| ===Solution 3 (Stars and Bars)===
| |
| Let <math>1</math> point of the triangle be fixed at the top. Then, there are <math>{7 \choose 2} = 21</math> ways to chose the other 2 points. There must be <math>3</math> spaces in the points and <math>3</math> points themselves. This leaves 2 extra points to be placed anywhere. By stars and bars, there are 3 triangle points (n) and <math>2</math> extra points (k-1) distributed so by the stars and bars formula, <math>{n+k-1 \choose k-1}</math>, there are <math>{4 \choose 2} = 6</math> ways to arrange the bars and stars. Thus, the probability is <math>\frac{(21 - 6)}{21} = \boxed{\frac{5}{7}}</math>.
| |
| The stars and bars formula might be inaccurate
| |
|
| |
|
| ==Video Solution== | | ==Video Solution== |
Revision as of 03:44, 9 November 2020
Problem
From a regular octagon, a triangle is formed by connecting three randomly chosen vertices of the octagon. What is the probability that at least one of the sides of the triangle is also a side of the octagon?
Solutions
Video Solution
https://www.youtube.com/watch?v=VNflxl7VpL0 - Happytwin
See Also
These problems are copyrighted © by the Mathematical Association of America.