2017 AIME II Problems/Problem 15: Difference between revisions
Phoenixfire (talk | contribs) |
Phoenixfire (talk | contribs) |
||
| Line 20: | Line 20: | ||
Claim: The gravity center <math>O</math> coincides with the circumcenter. | Claim: The gravity center <math>O</math> coincides with the circumcenter. | ||
Proof | |||
Proof: Let <math>G_D</math> be the centroid of triangle <math>ABC</math>; then <math>DO = \tfrac 34 DG_D</math> (by vectors). If we define <math>G_A</math>, <math>G_B</math>, <math>G_C</math> similarly, we get <math>AO = \tfrac 34 AG_A</math> and so on. But from symmetry we have <math>AG_A = BG_B = CG_C = DG_D</math>, hence <math>AO = BO = CO = DO</math>. <math>\blacksquare</math> | |||
Now we use the fact that an isosceles tetrahedron has circumradius <math>R = \sqrt{\frac18(a^2+b^2+c^2)}</math>. Here <math>R = \sqrt{678}</math> so <math>f(O) = 4R = 4\sqrt{678}</math>. Therefore, the answer is <math>4 + 678 = \boxed{682}</math>. | Now we use the fact that an isosceles tetrahedron has circumradius <math>R = \sqrt{\frac18(a^2+b^2+c^2)}</math>. Here <math>R = \sqrt{678}</math> so <math>f(O) = 4R = 4\sqrt{678}</math>. Therefore, the answer is <math>4 + 678 = \boxed{682}</math>. | ||
Revision as of 00:58, 9 November 2020
Problem
Tetrahedron
has
,
, and
. For any point
in space, define
. The least possible value of
can be expressed as
, where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
Solution
Solution 1
Let
and
be midpoints of
and
. The given conditions imply that
and
, and therefore
and
. It follows that
and
both lie on the common perpendicular bisector of
and
, and thus line
is that common perpendicular bisector. Points
and
are symmetric to
and
with respect to line
. If
is a point in space and
is the point symmetric to
with respect to line
, then
and
, so
.
Let
be the intersection of
and
. Then
, from which it follows that
. It remains to minimize
as
moves along
.
Allow
to rotate about
to point
in the plane
on the side of
opposite
. Because
is a right angle,
. It then follows that
, and equality occurs when
is the intersection of
and
. Thus
. Because
is the median of
, the Length of Median Formula shows that
and
. By the Pythagorean Theorem
.
Because
and
are right angles,
It follows that
. The requested sum is
.
Solution 2
Set
,
,
. Let
be the point which minimizes
.
Claim:
is the gravity center
.
Proof: Let
and
denote the midpoints of
and
. From
and
, we have
,
an hence
is a perpendicular bisector of both segments
and
. Then if
is any point inside tetrahedron
, its orthogonal projection onto line
will have smaller
-value; hence we conclude that
must lie on
. Similarly,
must lie on the line joining the midpoints of
and
.
Claim: The gravity center
coincides with the circumcenter.
Proof: Let
be the centroid of triangle
; then
(by vectors). If we define
,
,
similarly, we get
and so on. But from symmetry we have
, hence
.
Now we use the fact that an isosceles tetrahedron has circumradius
. Here
so
. Therefore, the answer is
.
Solution 3
Isosceles tetrahedron is inscribed in a rectangular box, whose facial diagonals are the edges of the tetrahedron. Minimum
occurs at the center of gravity, and
, where
is the length of the spatial diagonal of the rectangular box.
Let the three dimensions of the box be
.
Add three equations,
.
Hence
.
See Also
| 2017 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Last Question | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.