Art of Problem Solving

1991 AIME Problems/Problem 11: Difference between revisions

Joml88 (talk | contribs)
No edit summary
 
mNo edit summary
Line 1: Line 1:
== Problem ==
== Problem ==
Twelve congruent disks are placed on a circle <math>C^{}_{}</math> of radius 1 in such a way that the twelve disks cover <math>C^{}_{}</math>, no two of the disks overlap, and so that each of the twelve disks is tangent to its two neighbors. The resulting arrangement of disks is shown in the figure below.  The sum of the areas of the twelve disks can be written in the from <math>\pi(a-b\sqrt{c})</math>, where <math>a,b,c^{}_{}</math> are positive integers and <math>c^{}_{}</math> is not divisible by the square of any prime. Find <math>a+b+c^{}_{}</math>.
[[Image:AIME_1991_Problem_11.gif]]


== Solution ==
== Solution ==
{{solution}}


== See also ==
== See also ==
* [[1991 AIME Problems]]
{{AIME box|year=1991|num-b=10|num-a=12}}

Revision as of 01:36, 2 March 2007

Problem

Twelve congruent disks are placed on a circle $C^{}_{}$ of radius 1 in such a way that the twelve disks cover $C^{}_{}$, no two of the disks overlap, and so that each of the twelve disks is tangent to its two neighbors. The resulting arrangement of disks is shown in the figure below. The sum of the areas of the twelve disks can be written in the from $\pi(a-b\sqrt{c})$, where $a,b,c^{}_{}$ are positive integers and $c^{}_{}$ is not divisible by the square of any prime. Find $a+b+c^{}_{}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions