|
|
| Line 1: |
Line 1: |
| == Problem ==
| | #redirect [[2012 USAMO Problems/Problem 5]] |
| | |
| Let <math>P</math> be a point in the plane of triangle <math>ABC</math>, and <math>\gamma</math> a line passing through <math>P</math>. Let <math>A'</math>, <math>B'</math>, <math>C'</math> be the points where the reflections of lines <math>PA</math>, <math>PB</math>, <math>PC</math> with respect to <math>\gamma</math> intersect lines <math>BC</math>, <math>AC</math>, <math>AB</math>, respectively. Prove that <math>A'</math>, <math>B'</math>, <math>C'</math> are collinear.
| |
| | |
| ==Solution==
| |
| | |
| By the [[Law_of_Sines|law of sines]] on triangle <math>AB'P</math>,
| |
| <cmath>\frac{AB'}{\sin \angle APB'} = \frac{AP}{\sin \angle AB'P},</cmath>
| |
| so
| |
| <cmath>AB' = AP \cdot \frac{\sin \angle APB'}{\sin \angle AB'P}.</cmath>
| |
| | |
| <asy>
| |
| import graph;
| |
| import geometry;
| |
| | |
| unitsize(0.5 cm);
| |
| | |
| pair[] A, B, C;
| |
| pair P, R;
| |
| | |
| A[0] = (2,12);
| |
| B[0] = (0,0);
| |
| C[0] = (14,0);
| |
| P = (4,5);
| |
| R = 5*dir(70);
| |
| A[1] = extension(B[0],C[0],P,reflect(P + R,P - R)*(A[0]));
| |
| B[1] = extension(C[0],A[0],P,reflect(P + R,P - R)*(B[0]));
| |
| C[1] = extension(A[0],B[0],P,reflect(P + R,P - R)*(C[0]));
| |
| | |
| draw((P - R)--(P + R),red);
| |
| draw(A[1]--B[1]--C[1]--cycle,blue);
| |
| draw(A[0]--B[0]--C[0]--cycle);
| |
| draw(A[0]--P);
| |
| draw(B[0]--P);
| |
| draw(C[0]--P);
| |
| draw(P--A[1]);
| |
| draw(P--B[1]);
| |
| draw(P--C[1]);
| |
| draw(A[1]--B[0]);
| |
| draw(A[1]--B[0]);
| |
| | |
| label("$A$", A[0], N);
| |
| label("$B$", B[0], S);
| |
| label("$C$", C[0], SE);
| |
| dot("$A'$", A[1], SW);
| |
| dot("$B'$", B[1], NE);
| |
| dot("$C'$", C[1], W);
| |
| dot("$P$", P, SE);
| |
| label("$\gamma$", P + R, N);
| |
| </asy>
| |
| | |
| Similarly,
| |
| <cmath>
| |
| \begin{align*}
| |
| B'C &= CP \cdot \frac{\sin \angle CPB'}{\sin \angle CB'P}, \\
| |
| CA' &= CP \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P}, \\
| |
| A'B &= BP \cdot \frac{\sin \angle BPA'}{\sin \angle BA'P}, \\
| |
| BC' &= BP \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P}, \\
| |
| C'A &= AP \cdot \frac{\sin \angle APC'}{\sin \angle AC'P}.
| |
| \end{align*}
| |
| </cmath>
| |
| Hence,
| |
| <cmath>
| |
| \begin{align*}
| |
| &\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} \\
| |
| &= \frac{\sin \angle APB'}{\sin \angle AB'P} \cdot \frac{\sin \angle CB'P}{\sin \angle CPB'} \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P} \cdot \frac{\sin \angle BA'P}{\sin \angle BPA'} \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P} \cdot \frac{\sin \angle AC'P}{\sin \angle APC'}.
| |
| \end{align*}
| |
| </cmath>
| |
| | |
| Since angles <math>\angle AB'P</math> and <math>\angle CB'P</math> are supplementary or equal, depending on the position of <math>B'</math> on <math>AC</math>,
| |
| <cmath>\sin \angle AB'P = \sin \angle CB'P.</cmath>
| |
| Similarly,
| |
| <cmath>
| |
| \begin{align*}
| |
| \sin \angle CA'P &= \sin \angle BA'P, \\
| |
| \sin \angle BC'P &= \sin \angle AC'P.
| |
| \end{align*}
| |
| </cmath>
| |
| | |
| By the reflective property, <math>\angle APB'</math> and <math>\angle BPA'</math> are supplementary or equal, so
| |
| <cmath>\sin \angle APB' = \sin \angle BPA'.</cmath>
| |
| Similarly,
| |
| <cmath>
| |
| \begin{align*}
| |
| \sin \angle CPA' &= \sin \angle APC', \\
| |
| \sin \angle BPC' &= \sin \angle CPB'.
| |
| \end{align*}
| |
| </cmath>
| |
| Therefore,
| |
| <cmath>\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} = 1,</cmath>
| |
| so by [[Menelaus'_Theorem|Menelaus's theorem]], <math>A'</math>, <math>B'</math>, and <math>C'</math> are collinear.
| |
| | |
| {{alternate solutions}}
| |
| | |
| ==See also==
| |
| *[[USAJMO Problems and Solutions]]
| |
| | |
| {{USAJMO newbox|year=2012|num-b=5|aftertext=|after=Last Problem}}
| |
| {{MAA Notice}}
| |