Art of Problem Solving

1995 AIME Problems/Problem 7: Difference between revisions

mNo edit summary
fmt
Line 1: Line 1:
== Problem ==
== Problem ==
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and
<center><math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math></center>
:<math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math>
where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math>
where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math>


Line 7: Line 7:


== See also ==
== See also ==
* [[1995_AIME_Problems/Problem_6|Previous Problem]]
* [[1995_AIME_Problems/Problem_8|Next Problem]]
* [[1995 AIME Problems]]
* [[1995 AIME Problems]]
{{AIME box|year=1995|num-b=6|num-a=8}}

Revision as of 21:23, 8 February 2007

Problem

Given that $\displaystyle (1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $\displaystyle k, m,$ and $\displaystyle n_{}$ are positive integers with $\displaystyle m_{}$ and $\displaystyle n_{}$ relatively prime, find $\displaystyle k+m+n.$

Solution

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions