Art of Problem Solving

1995 AIME Problems/Problem 7: Difference between revisions

mNo edit summary
mNo edit summary
Line 2: Line 2:
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and
<center><math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math></center>
<center><math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math></center>
where <math>\displaystyle k, m,</math> and <math>n</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math>
where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math>


== Solution ==
== Solution ==

Revision as of 00:15, 22 January 2007

Problem

Given that $\displaystyle (1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $\displaystyle k, m,$ and $\displaystyle n_{}$ are positive integers with $\displaystyle m_{}$ and $\displaystyle n_{}$ relatively prime, find $\displaystyle k+m+n.$

Solution

See also