2004 Pan African MO Problems/Problem 2: Difference between revisions
Created page with "<math>\sqrt{4-2\sqrt{3}} = a\sqrt{3}-b</math>. Through guess and check with small numbers, <math>a = 1</math> and <math>b = 1</math>. So <math>\sqrt{4-2\sqrt{3}} = \sqrt{3}-..." |
Rockmanex3 (talk | contribs) m Reformatting |
||
| Line 1: | Line 1: | ||
==Problem== | |||
Is <math>4\sqrt{4-2\sqrt{3}}+\sqrt{97-56\sqrt{3}}</math> an integer? | |||
==Solution== | |||
<math>\sqrt{4-2\sqrt{3}} = a\sqrt{3}-b</math>. | <math>\sqrt{4-2\sqrt{3}} = a\sqrt{3}-b</math>. | ||
Through guess and check with small numbers, <math>a = 1</math> and <math>b = 1</math>. | Through guess and check with small numbers, <math>a = 1</math> and <math>b = 1</math>. | ||
| Line 7: | Line 13: | ||
So <math>\sqrt{97-56\sqrt{3}} = 7-4\sqrt{3}</math>. | So <math>\sqrt{97-56\sqrt{3}} = 7-4\sqrt{3}</math>. | ||
Value of <math>4\sqrt{4-2\sqrt{3}} + \sqrt{97-56\sqrt{3}} = (4\sqrt{3}-4) + (7-4\sqrt{3}) = 3</math> | Value of <math>4\sqrt{4-2\sqrt{3}} + \sqrt{97-56\sqrt{3}} = (4\sqrt{3}-4) + (7-4\sqrt{3}) = 3</math>. | ||
==See Also== | |||
{{Pan African MO box|year=2004|num-b=1|num-a=3}} | |||
[[Category:Introductory Number Theory Problems]] | |||