Art of Problem Solving

The Apple Method: Difference between revisions

Aops81619 (talk | contribs)
Aops81619 (talk | contribs)
Line 6: Line 6:
<math>\emph{Solution:}</math>
<math>\emph{Solution:}</math>


If we set <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>(^{^(})^2= 6+(^{^(})</math>.
If we set <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}</math>.


Solving, we get <math>(^{^(})=\boxed{3}</math>
Solving, we get <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}</math>

Revision as of 15:23, 21 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}$.

Solving, we get $\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}$