2020 AMC 12B Problems/Problem 18: Difference between revisions
Created page with "==Solution== Plot a point <math>F'</math> such that <math>F'</math> and <math>I</math> are collinear and extend line <math>FB</math> to point <math>B'</math> such that <math>..." |
No edit summary |
||
| Line 1: | Line 1: | ||
In square <math>ABCD</math>, points <math>E</math> and <math>H</math> lie on <math>\overline{AB}</math> and <math>\overline{DA}</math>, respectively, so that <math>AE=AH.</math> Points <math>F</math> and <math>G</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math>, respectively, and points <math>I</math> and <math>J</math> lie on <math>\overline{EH}</math> so that <math>\overline{FI} \perp \overline{EH}</math> and <math>\overline{GJ} \perp \overline{EH}</math>. See the figure below. Triangle <math>AEH</math>, quadrilateral <math>BFIE</math>, quadrilateral <math>DHJG</math>, and pentagon <math>FCGJI</math> each has area <math>1.</math> What is <math>FI^2</math>? | |||
<asy> | |||
real x=2sqrt(2); | |||
real y=2sqrt(16-8sqrt(2))-4+2sqrt(2); | |||
real z=2sqrt(8-4sqrt(2)); | |||
pair A, B, C, D, E, F, G, H, I, J; | |||
A = (0,0); | |||
B = (4,0); | |||
C = (4,4); | |||
D = (0,4); | |||
E = (x,0); | |||
F = (4,y); | |||
G = (y,4); | |||
H = (0,x); | |||
I = F + z * dir(225); | |||
J = G + z * dir(225); | |||
draw(A--B--C--D--A); | |||
draw(H--E); | |||
draw(J--G^^F--I); | |||
draw(rightanglemark(G, J, I), linewidth(.5)); | |||
draw(rightanglemark(F, I, E), linewidth(.5)); | |||
dot("$A$", A, S); | |||
dot("$B$", B, S); | |||
dot("$C$", C, dir(90)); | |||
dot("$D$", D, dir(90)); | |||
dot("$E$", E, S); | |||
dot("$F$", F, dir(0)); | |||
dot("$G$", G, N); | |||
dot("$H$", H, W); | |||
dot("$I$", I, SW); | |||
dot("$J$", J, SW); | |||
</asy> | |||
<math>\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2</math> | |||
==Solution== | ==Solution== | ||
Plot a point <math>F'</math> such that <math>F'</math> and <math>I</math> are collinear and extend line <math>FB</math> to point <math>B'</math> such that <math>FIB'F'</math> forms a square. Extend line <math>AE</math> to meet line F'B' and point <math>E'</math> is the intersection of the two. The area of this square is equivalent to <math>FI^2</math>. We see that the area of square <math>ABCD</math> is <math>4</math>, meaning each side is of length 2. The area of the quadrilateral <math>EIFF'E'</math> is <math>2</math>. Length <math>AE=\sqrt{2}</math>, thus <math>EB=2-\sqrt{2}</math>. Triangle <math>EB'E'</math> is isosceles, and the area of this triangle is <math>\frac{1}{2}*(4-2\sqrt{2})*(2-\sqrt{2})=6-4sqrt(2)</math>. Adding these two areas, we get $2+6-4\sqrt{2}=\boxed{\textbf{B) }8-4\sqrt{2}} | Plot a point <math>F'</math> such that <math>F'</math> and <math>I</math> are collinear and extend line <math>FB</math> to point <math>B'</math> such that <math>FIB'F'</math> forms a square. Extend line <math>AE</math> to meet line F'B' and point <math>E'</math> is the intersection of the two. The area of this square is equivalent to <math>FI^2</math>. We see that the area of square <math>ABCD</math> is <math>4</math>, meaning each side is of length 2. The area of the quadrilateral <math>EIFF'E'</math> is <math>2</math>. Length <math>AE=\sqrt{2}</math>, thus <math>EB=2-\sqrt{2}</math>. Triangle <math>EB'E'</math> is isosceles, and the area of this triangle is <math>\frac{1}{2}*(4-2\sqrt{2})*(2-\sqrt{2})=6-4sqrt(2)</math>. Adding these two areas, we get $2+6-4\sqrt{2}=\boxed{\textbf{B) }8-4\sqrt{2}} | ||
Revision as of 21:30, 7 February 2020
In square
, points
and
lie on
and
, respectively, so that
Points
and
lie on
and
, respectively, and points
and
lie on
so that
and
. See the figure below. Triangle
, quadrilateral
, quadrilateral
, and pentagon
each has area
What is
?
Solution
Plot a point
such that
and
are collinear and extend line
to point
such that
forms a square. Extend line
to meet line F'B' and point
is the intersection of the two. The area of this square is equivalent to
. We see that the area of square
is
, meaning each side is of length 2. The area of the quadrilateral
is
. Length
, thus
. Triangle
is isosceles, and the area of this triangle is
. Adding these two areas, we get $2+6-4\sqrt{2}=\boxed{\textbf{B) }8-4\sqrt{2}}