Art of Problem Solving

2020 AMC 10B Problems/Problem 1: Difference between revisions

Created page with "==Problem 1== Problem <math>\textbf{(A)}\ \qquad\textbf{(B)}\ \qquad\textbf{(C)}\ \qquad\textbf{(D)}\ \qquad\textbf{(E)}\ </math> == Solution == Solution ==Video Solution==..."
 
Quacker88 (talk | contribs)
Line 1: Line 1:
==Problem 1==
==Problem==
Problem


<math>\textbf{(A)}\ \qquad\textbf{(B)}\ \qquad\textbf{(C)}\ \qquad\textbf{(D)}\ \qquad\textbf{(E)}\ </math>
What is the value of
<cmath>1-(-2)-3-(-4)-5-(-6)?</cmath>
 
<math>\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21</math>
 
==Solution==
We know that when we subtract negative numbers, <math>a-(-b)=a+b</math>.
 
The equation becomes <math>1+2-3+4-5+6 = \boxed{\textbf{(D)}\ 5}</math>


== Solution ==  
== Solution ==  

Revision as of 15:25, 7 February 2020

Problem

What is the value of \[1-(-2)-3-(-4)-5-(-6)?\]

$\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\  3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21$

Solution

We know that when we subtract negative numbers, $a-(-b)=a+b$.

The equation becomes $1+2-3+4-5+6 = \boxed{\textbf{(D)}\ 5}$

Solution

Solution

Video Solution

YouTube Link

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.