2020 AMC 10A Problems/Problem 16: Difference between revisions
Advancedjus (talk | contribs) |
|||
| Line 1: | Line 1: | ||
== Problem == | == Problem 16 == | ||
A point is chosen at random within the square in the coordinate plane whose vertices are <math>(0, 0), (2020, 0), (2020, 2020),</math> and <math>(0, 2020)</math>. The probability that the point is within <math>d</math> units of a lattice point is <math>\tfrac{1}{2}</math>. (A point <math>(x, y)</math> is a lattice point if <math>x</math> and <math>y</math> are both integers.) What is <math>d</math> to the nearest tenth<math>?</math> | |||
<math>\textbf{(A) } 0.3 \qquad \textbf{(B) } 0.4 \qquad \textbf{(C) } 0.5 \qquad \textbf{(D) } 0.6 \qquad \textbf{(E) } 0.7</math> | |||
== Solution == | == Solution == | ||
Revision as of 21:26, 31 January 2020
Problem 16
A point is chosen at random within the square in the coordinate plane whose vertices are
and
. The probability that the point is within
units of a lattice point is
. (A point
is a lattice point if
and
are both integers.) What is
to the nearest tenth
Solution
See Also
| 2020 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 15 |
Followed by Problem 17 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.