2020 AMC 10A Problems/Problem 22: Difference between revisions
Created page with "For how many positive integers <math>n \le 1000</math> is<cmath>\left\lfloor \dfrac{998}{n} \right\rfloor+\left\lfloor \dfrac{999}{n} \right\rfloor+\left\lfloor \dfrac{1000}{n..." |
No edit summary |
||
| Line 2: | Line 2: | ||
<math>\textbf{(A) } 22 \qquad\textbf{(B) } 23 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 26</math> | <math>\textbf{(A) } 22 \qquad\textbf{(B) } 23 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 26</math> | ||
==See Also== | |||
{{AMC10 box|year=2020|ab=A|num-b=21|num-a=23}} | |||
{{MAA Notice}} | |||
Revision as of 21:05, 31 January 2020
For how many positive integers
is
not divisible by
? (Recall that
is the greatest integer less than or equal to
.)
See Also
| 2020 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 21 |
Followed by Problem 23 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.