2013 AMC 12A Problems/Problem 21: Difference between revisions
No edit summary |
No edit summary |
||
| Line 54: | Line 54: | ||
==Solution 3== | ==Solution 3== | ||
Define <math>f(2) = \log(2)</math>, and | Define <math>f(2) = \log(2)</math>, and <math>f(n) = \log(n+f(n-1)), \text{ for } n > 2.</math> We are looking for <math>f(2013)</math>. First we show | ||
<math>f(n) = \log(n+f(n-1)), | |||
We are looking for <math>f(2013)</math>. | |||
'''Lemma.''' For any integer <math>n>2</math>, if <math>n < 10^k-k</math> then <math>f(n) < k</math>. | '''Lemma.''' For any integer <math>n>2</math>, if <math>n < 10^k-k</math> then <math>f(n) < k</math>. | ||
| Line 65: | Line 61: | ||
Finally, note that <math>2012 < 10^4 - 4</math> so that the Lemma implies that <math>f(2012) < 4</math>. This means that <math>f(2013) = \log(2013+f(2012)) < \log(2017)</math>, which leaves us with only one option <math>\boxed{\textbf{(A) } (\log 2016, \log 2017)}</math>. | Finally, note that <math>2012 < 10^4 - 4</math> so that the Lemma implies that <math>f(2012) < 4</math>. This means that <math>f(2013) = \log(2013+f(2012)) < \log(2017)</math>, which leaves us with only one option <math>\boxed{\textbf{(A) } (\log 2016, \log 2017)}</math>. | ||
==Solution 4== | |||
Define <math>f(2) = \log(2)</math>, and <math>f(n) = \log(n+f(n-1)), \text{ for } n > 2.</math> We start with a simple observation: | |||
'''Lemma.''' For <math>x,y>2</math>, <math>\log(x+\log(y)) < \log(x)+\log(y)=\log(xy)</math>. | |||
'''Proof.''' Since <math>x,y>2</math>, we have <math>xy-x-y = (x-1)(y-1) - 1 > 0</math>, so <math>xy - x-\log(y) > xy - x - y > 0</math>. | |||
It follows that <math>\log(z+\log(x+\log(y))) < \log(x)+\log(y)+\log(z)</math>, and so on. | |||
Thus <math>f(2010) < \log 2 + \log 3 + \cdots + \log 2010 < \log 2010 + \cdots + \log 2010 < 2009\cdot 4 = 8036</math>. | |||
Then <math>f(2011) = \log(2011+f(2010)) < \log(10047) < 5</math>. | |||
It follows that <math>f(2012) = \log(2012+f(2011)) < \log(2017) < 4</math>. | |||
Finally, we get <math>f(2013) = \log(2013 + f(2012)) < \log(2017)</math>, which leaves us with only option <math>\boxed{\textbf{(A)}}</math>. | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2013|ab=A|num-b=20|num-a=22}} | {{AMC12 box|year=2013|ab=A|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 22:41, 17 December 2019
Problem
Consider
. Which of the following intervals contains
?
Solution 1
Let
and
, and from the problem description,
We can reason out an approximation, by ignoring the
:
And a better approximation, by plugging in our first approximation for
in our original definition for
:
And an even better approximation:
Continuing this pattern, obviously, will eventually terminate at
, in other words our original definition of
.
However, at
, going further than
will not distinguish between our answer choices.
is nearly indistinguishable from
.
So we take
and plug in.
Since
, we know
. This gives us our answer range:
Solution 2
Suppose
.
Then
.
So if
, then
.
So
.
Repeating, we then get
.
This is clearly absurd (the RHS continues to grow more than exponentially for each iteration).
So,
is not greater than
.
So
.
But this leaves only one answer, so we are done.
Solution 3
Define
, and
We are looking for
. First we show
Lemma. For any integer
, if
then
.
Proof. First note that
. Let
. Then
, so
. Suppose the claim is true for
. Then
. The Lemma is thus proved by induction.
Finally, note that
so that the Lemma implies that
. This means that
, which leaves us with only one option
.
Solution 4
Define
, and
We start with a simple observation:
Lemma. For
,
.
Proof. Since
, we have
, so
.
It follows that
, and so on.
Thus
.
Then
.
It follows that
.
Finally, we get
, which leaves us with only option
.
See Also
| 2013 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 20 |
Followed by Problem 22 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.