Molar heat capacity: Difference between revisions
create article |
spacing |
||
| Line 1: | Line 1: | ||
Adding heat to a substance changes its temperature in accordance to <cmath>\Delta Q=nc_M\Delta T</cmath> | Adding heat to a substance changes its temperature in accordance to <cmath>\Delta Q=nc_M\Delta T</cmath> | ||
<math>\Delta Q=</math> change in heat | <math>\Delta Q=</math> change in heat | ||
<br /> | |||
<math>n=</math> moles of substance | <math>n=</math> moles of substance | ||
<br /> | |||
<math>c_M=</math> molar heat capacity | <math>c_M=</math> molar heat capacity | ||
<br /> | |||
<math>\Delta T=</math> change in temperature | <math>\Delta T=</math> change in temperature | ||
<br /> | |||
<br /> | |||
At constant volume, <math>c_M=c_V</math>. | At constant volume, <math>c_M=c_V</math>. | ||
<br /> | |||
At constant pressure, <math>c_M=c_P</math>. | At constant pressure, <math>c_M=c_P</math>. | ||
<br /> | |||
For an ideal gas, <math>c_P=c_V+R</math>. | <br /> | ||
For an ideal gas, <math>c_P=c_V+R</math> where <math>R=</math> the ideal gas constant. | |||
<br /> | |||
For an incompressible substance, <math>c_P=c_V</math>. | For an incompressible substance, <math>c_P=c_V</math>. | ||
<br /> | |||
<br /> | |||
In adiabatic compression (<math>\Delta Q=0</math>) of an ideal gas, <math>PV^\gamma</math> stays constant, where <math>\gamma=\frac{c_V+R}{c_V}</math>. | In adiabatic compression (<math>\Delta Q=0</math>) of an ideal gas, <math>PV^\gamma</math> stays constant, where <math>\gamma=\frac{c_V+R}{c_V}</math>. | ||
Revision as of 04:30, 27 November 2019
Adding heat to a substance changes its temperature in accordance to
change in heat
moles of substance
molar heat capacity
change in temperature
At constant volume,
.
At constant pressure,
.
For an ideal gas,
where
the ideal gas constant.
For an incompressible substance,
.
In adiabatic compression (
) of an ideal gas,
stays constant, where
.