2019 USAMO Problems/Problem 1: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem | ==Problem== | ||
Let <math>\mathbb{N}</math> be the set of positive integers. A function <math>f:\mathbb{N}\to\mathbb{N}</math> satisfies the equation <cmath>\underbrace{f(f(\ldots f}_{f(n)\text{ times}}(n)\ldots))=\frac{n^2}{f(f(n))}</cmath>for all positive integers <math>n</math>. Given this information, determine all possible values of <math>f(1000)</math>. | Let <math>\mathbb{N}</math> be the set of positive integers. A function <math>f:\mathbb{N}\to\mathbb{N}</math> satisfies the equation <cmath>\underbrace{f(f(\ldots f}_{f(n)\text{ times}}(n)\ldots))=\frac{n^2}{f(f(n))}</cmath>for all positive integers <math>n</math>. Given this information, determine all possible values of <math>f(1000)</math>. | ||
Revision as of 23:06, 19 April 2019
Problem
Let
be the set of positive integers. A function
satisfies the equation
for all positive integers
. Given this information, determine all possible values of
.
Solution
These problems are copyrighted © by the Mathematical Association of America.
See also
| 2019 USAMO (Problems • Resources) | ||
| First Problem | Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||