2019 USAJMO Problems/Problem 1: Difference between revisions
Brendanb4321 (talk | contribs) Created page with "==Problem== There are <math>a+b</math> bowls arranged in a row, number <math>1</math> through <math>a+b</math>, where <math>a</math> and <math>b</math> are given positive inte..." |
Brendanb4321 (talk | contribs) m →Problem |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
There are <math>a+b</math> bowls arranged in a row, | There are <math>a+b</math> bowls arranged in a row, numbered <math>1</math> through <math>a+b</math>, where <math>a</math> and <math>b</math> are given positive integers. Initially, each of the first <math>a</math> bowls contains an apple, and each of the last <math>b</math> bowls contains a pear. | ||
A legal move consists of moving an apple from bowl <math>i</math> to bowl <math>i+1</math> and a pear from bowl <math>j</math> to bowl <math>j-1</math>, provided that the difference <math>i-j</math> is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first <math>b</math> bowls each containing a pear and the last <math>a</math> bowls each containing an apple. Show that this is possible if and only if the product <math>ab</math> is even. | A legal move consists of moving an apple from bowl <math>i</math> to bowl <math>i+1</math> and a pear from bowl <math>j</math> to bowl <math>j-1</math>, provided that the difference <math>i-j</math> is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first <math>b</math> bowls each containing a pear and the last <math>a</math> bowls each containing an apple. Show that this is possible if and only if the product <math>ab</math> is even. | ||
Revision as of 22:56, 18 April 2019
Problem
There are
bowls arranged in a row, numbered
through
, where
and
are given positive integers. Initially, each of the first
bowls contains an apple, and each of the last
bowls contains a pear.
A legal move consists of moving an apple from bowl
to bowl
and a pear from bowl
to bowl
, provided that the difference
is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first
bowls each containing a pear and the last
bowls each containing an apple. Show that this is possible if and only if the product
is even.
Solution
These problems are copyrighted © by the Mathematical Association of America.
See also
| 2019 USAJMO (Problems • Resources) | ||
| First Problem | Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAJMO Problems and Solutions | ||