Art of Problem Solving

2004 AMC 10A Problems/Problem 12: Difference between revisions

Chelsea zhang (talk | contribs)
Chelsea zhang (talk | contribs)
Line 1: Line 1:
==Problem==
==Problem==
Henry's Hamburger Haven offers its hamburgers with the following condiments: ketchup, mustard, mayonnaise, tomato, lettuce, pickles, cheese, and onions.  A customer can choose one, two, or three meat patties, and any collection of condiments.  How many different kinds of hamburgers can be ordered?
Henry's Hamburger Haven offers its hamburgers with the following condiments: ketchup, mustard, mayonnaise, tomato, lettuce, pickles, cheese, and onions.  A customer can choose one, two, or three meat patties and any collection of condiments.  How many different kinds of hamburgers can be ordered?


<math> \mathrm{(A) \ } 24 \qquad \mathrm{(B) \ } 256 \qquad \mathrm{(C) \ } 768 \qquad \mathrm{(D) \ } 40,320 \qquad \mathrm{(E) \ } 120,960  </math>
<math> \mathrm{(A) \ } 24 \qquad \mathrm{(B) \ } 256 \qquad \mathrm{(C) \ } 768 \qquad \mathrm{(D) \ } 40,320 \qquad \mathrm{(E) \ } 120,960  </math>

Revision as of 13:32, 7 April 2019

Problem

Henry's Hamburger Haven offers its hamburgers with the following condiments: ketchup, mustard, mayonnaise, tomato, lettuce, pickles, cheese, and onions. A customer can choose one, two, or three meat patties and any collection of condiments. How many different kinds of hamburgers can be ordered?

$\mathrm{(A) \ } 24 \qquad \mathrm{(B) \ } 256 \qquad \mathrm{(C) \ } 768 \qquad \mathrm{(D) \ } 40,320 \qquad \mathrm{(E) \ } 120,960$

Solution

For each condiment, a customer may either choose to order it or not. There are $8$ total condiments to choose from. Therefore, there are $2^8=256$ ways to order the condiments. There are also $3$ choices for the meat, making a total of $256\times3=768$ possible hamburgers. $\boxed{\mathrm{(C)}\ 768}$

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.