2019 AMC 10A Problems/Problem 25: Difference between revisions
Created page with "==Problem== For how many integers <math>n</math> between <math>1</math> and <math>50</math>, inclusive, is <cmath>\frac{(n^2-1)!}{(n!)^n}</cmath> an integer? (Recall that <ma..." |
No edit summary |
||
| Line 1: | Line 1: | ||
{{duplicate|[[2019 AMC 10A Problems|2019 AMC 10A #25]] and [[2019 AMC 12A Problems|2019 AMC 12A #24]]}} | |||
==Problem== | ==Problem== | ||
Revision as of 15:42, 9 February 2019
- The following problem is from both the 2019 AMC 10A #25 and 2019 AMC 12A #24, so both problems redirect to this page.
Problem
For how many integers
between
and
, inclusive, is
an integer? (Recall that
.)
Solution
See Also
| 2019 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 24 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2019 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 23 |
Followed by Problem 25 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.