1983 AHSME Problems/Problem 30: Difference between revisions
mNo edit summary |
Sevenoptimus (talk | contribs) Added a copy of the problem statement |
||
| Line 1: | Line 1: | ||
==Problem== | |||
Distinct points <math>A</math> and <math>B</math> are on a semicircle with diameter <math>MN</math> and center <math>C</math>. | |||
The point <math>P</math> is on <math>CN</math> and <math>\angle CAP = \angle CBP = 10^{\circ}</math>. If <math>\stackrel{\frown}{MA} = 40^{\circ}</math>, then <math>\stackrel{\frown}{BN}</math> equals | |||
[[File:pdfresizer.com-pdf-convert-q30.png]] | |||
<math>\textbf{(A)}\ 10^{\circ}\qquad | |||
\textbf{(B)}\ 15^{\circ}\qquad | |||
\textbf{(C)}\ 20^{\circ}\qquad | |||
\textbf{(D)}\ 25^{\circ}\qquad | |||
\textbf{(E)}\ 30^{\circ} </math> | |||
==Solution== | |||
Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic. | Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic. | ||
