2008 AMC 10B Problems/Problem 13: Difference between revisions
No edit summary |
|||
| Line 4: | Line 4: | ||
<math>\mathrm{(A)}\ {{{2008}}} \qquad \mathrm{(B)}\ {{{4015}}} \qquad \mathrm{(C)}\ {{{4016}}} \qquad \mathrm{(D)}\ {{{4,030,056}}} \qquad \mathrm{(E)}\ {{{4,032,064}}}</math> | <math>\mathrm{(A)}\ {{{2008}}} \qquad \mathrm{(B)}\ {{{4015}}} \qquad \mathrm{(C)}\ {{{4016}}} \qquad \mathrm{(D)}\ {{{4,030,056}}} \qquad \mathrm{(E)}\ {{{4,032,064}}}</math> | ||
==Solution== | ==Solution 1== | ||
Since the mean of the first <math>n</math> terms is <math>n</math>, the sum of the first <math>n</math> terms is <math>n^2</math>. Thus, the sum of the first <math>2007</math> terms is <math>2007^2</math> and the sum of the first <math>2008</math> terms is <math>2008^2</math>. Hence, the 2008th term is <math>2008^2-2007^2=(2008+2007)(2008-2007)=4015\Rightarrow \boxed{\text{(B)}}</math> | Since the mean of the first <math>n</math> terms is <math>n</math>, the sum of the first <math>n</math> terms is <math>n^2</math>. Thus, the sum of the first <math>2007</math> terms is <math>2007^2</math> and the sum of the first <math>2008</math> terms is <math>2008^2</math>. Hence, the 2008th term is <math>2008^2-2007^2=(2008+2007)(2008-2007)=4015\Rightarrow \boxed{\text{(B)}}</math> | ||
Revision as of 15:45, 15 February 2021
Problem
For each positive integer
, the mean of the first
terms of a sequence is
. What is the
term of the sequence?
Solution 1
Since the mean of the first
terms is
, the sum of the first
terms is
. Thus, the sum of the first
terms is
and the sum of the first
terms is
. Hence, the 2008th term is
Note that
is the sum of the first n odd numbers.
Solution 2 (Using Answer Choices)
From inspection, we see that the sum of the sequence is basically
. We also notice that
Is the sum of the first
ODD integers. Because
is the only odd integer,
is the answer.
See also
| 2008 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.