2018 AMC 10B Problems/Problem 23: Difference between revisions
Created page with "23. How many ordered pairs <math>(a, b)</math> of positive integers satisfy the equation <cmath>a\cdot b + 63 = 20\cdot \text{lcm}(a, b) + 12\cdot\text{gcd}(a,b),</cmath> whe..." |
Work in progress of my answer to this question. |
||
| Line 4: | Line 4: | ||
<math>\textbf{(A)} \text{ 0} \qquad \textbf{(B)} \text{ 2} \qquad \textbf{(C)} \text{ 4} \qquad \textbf{(D)} \text{ 6} \qquad \textbf{(E)} \text{ 8}</math> | <math>\textbf{(A)} \text{ 0} \qquad \textbf{(B)} \text{ 2} \qquad \textbf{(C)} \text{ 4} \qquad \textbf{(D)} \text{ 6} \qquad \textbf{(E)} \text{ 8}</math> | ||
Let <math>x = lcm(a, b)</math>, and <math>y = gcd(a, b)</math>. Therefore, <math>a\cdot b = lcm(a, b)\cdot gcd(a, b) = x\cdot y</math>. Thus, the equation becomes | |||
<cmath>x\cdot y + 63 = 20x + 12y</cmath>, | |||
<cmath>x\cdot y - 20x - 12y + 63 = 0</cmath>. | |||
(awesomeag) | |||
Revision as of 15:22, 16 February 2018
23. How many ordered pairs
of positive integers satisfy the equation
where
denotes the greatest common divisor of
and
, and
denotes their least common multiple?
Let
, and
. Therefore,
. Thus, the equation becomes
,
.
(awesomeag)