Art of Problem Solving

2004 AMC 8 Problems/Problem 17: Difference between revisions

Vbkris77 (talk | contribs)
Phoenixfire (talk | contribs)
Line 4: Line 4:
<math>\textbf{(A)}\ 1\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12</math>
<math>\textbf{(A)}\ 1\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12</math>


==Solution==
==Solution 1==
For each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have <math>3</math> left. In partitioning the remaining <math>3</math> pencils into <math>3</math> distinct groups, use [[Ball-and-urn]] to find the number of possibilities is <math>\binom{3+3-1}{3} = \binom{5}{3} = \boxed{\textbf{(D)}\ 10}</math>.
For each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have <math>3</math> left. In partitioning the remaining <math>3</math> pencils into <math>3</math> distinct groups, use [[Ball-and-urn]] to find the number of possibilities is <math>\binom{3+3-1}{3} = \binom{5}{3} = \boxed{\textbf{(D)}\ 10}</math>.
==Solution 2==
like in solution 1, for each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have <math>3</math> left. In partitioning the remaining <math>3</math> pencils into <math>3</math> distinct groups, use number of non-negetive integral soutions.
Let the three friends be <math>a</math>, <math>b</math>, <math>c</math> repectively.
<math>a</math> + <math>b</math> + <math>c</math> = 3
The total being 3 and 2 plus signs, which implies
<math>\binom{3+2}{3} = \binom{5}{3} = \boxed{\textbf{(D)}\ 10}</math>.


==See Also==
==See Also==
{{AMC8 box|year=2004|num-b=16|num-a=18}}
{{AMC8 box|year=2004|num-b=16|num-a=18}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 10:53, 15 November 2019

Problem

Three friends have a total of $6$ identical pencils, and each one has at least one pencil. In how many ways can this happen?

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12$

Solution 1

For each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have $3$ left. In partitioning the remaining $3$ pencils into $3$ distinct groups, use Ball-and-urn to find the number of possibilities is $\binom{3+3-1}{3} = \binom{5}{3} = \boxed{\textbf{(D)}\ 10}$.

Solution 2

like in solution 1, for each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have $3$ left. In partitioning the remaining $3$ pencils into $3$ distinct groups, use number of non-negetive integral soutions. Let the three friends be $a$, $b$, $c$ repectively.

$a$ + $b$ + $c$ = 3 The total being 3 and 2 plus signs, which implies $\binom{3+2}{3} = \binom{5}{3} = \boxed{\textbf{(D)}\ 10}$.

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.