1997 JBMO Problems/Problem 3: Difference between revisions
No edit summary |
Rockmanex3 (talk | contribs) Solution to Problem 3 (credit to stats11) -- inequality chasing |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>ABC</math> be a triangle and let <math>I</math> be the incenter. Let <math>N</math>, <math>M</math> be the midpoints of the sides <math>AB</math> and <math>CA</math> respectively. The lines <math>BI</math> and <math>CI</math> meet <math>MN</math> at <math>K</math> and <math>L</math> respectively. Prove that <math>AI+BI+CI>BC+KL</math>. | |||
== Solution == | == Solution == | ||
== See | <asy> | ||
size(9.22 cm); | |||
pair B=(0,0), A=(50,120), C=(140,0), N=(25,60), M=(95,60), I=(60,40), K=(90,60), L=(20,60); | |||
draw(B--A--C--B); | |||
draw(circle(I,40)); | |||
dot(A); | |||
label("A",(50,125)); | |||
dot(B); | |||
label("B",B,SW); | |||
dot(C); | |||
label("C",C,SE); | |||
dot(N); | |||
label("N",(24,65)); | |||
dot(M); | |||
label("M",M,NE); | |||
dot(I); | |||
label("I",I,S); | |||
dot(K); | |||
label("K",K,NW); | |||
dot(L); | |||
label("L",L,NW); | |||
draw(L--C,dotted); | |||
draw(K--B,dotted); | |||
draw(L--M); | |||
draw(anglemark(C,B,A,200)); | |||
draw(anglemark(N,K,I,200)); | |||
draw(anglemark(A,C,B,200)); | |||
draw(anglemark(A,C,B,150)); | |||
draw(anglemark(C,L,K,400)); | |||
draw(anglemark(C,L,K,450)); | |||
</asy> | |||
First, by SAS Similarity, <math>\triangle ANM \sim \triangle ABC,</math> so <math>NM \parallel BC</math> and <math>MN = \tfrac12 BC.</math> That means <math>\angle IBC = \angle IKN,</math> and since <math>\angle IBN = \angle IBC,</math> <math>\triangle NBK</math> is an [[isosceles triangle]]. Similarly, <math>\angle MLC = \angle LCB = \angle LCM,</math> making <math>\triangle MLC</math> an isosceles as well. Thus, <math>ML = MC</math> and <math>NB = NK.</math> | |||
<br> | |||
By the [[Triangle Inequality]], <math>AI + IB > AB,</math> and <math>AI + IC > AC</math>, and <math>BI + IC > BC.</math> That means | |||
<cmath>\begin{align*} | |||
2(AI + IB + IC) &> AB + AC + BC \\ | |||
AI + IB + IC &> NK + ML + MN \\ | |||
&> NK + (MN + LN) + MN \\ | |||
&> KL + 2 MN \\ | |||
&> KL + BC. | |||
\end{align*}</cmath> | |||
== See Also == | |||
{{JBMO box|year=1997|num-b=2|num-a=4}} | {{JBMO box|year=1997|num-b=2|num-a=4}} | ||
[[Category: | [[Category:Olympiad Geometry Problems]] | ||
Latest revision as of 18:14, 7 August 2018
Problem
Let
be a triangle and let
be the incenter. Let
,
be the midpoints of the sides
and
respectively. The lines
and
meet
at
and
respectively. Prove that
.
Solution
First, by SAS Similarity,
so
and
That means
and since
is an isosceles triangle. Similarly,
making
an isosceles as well. Thus,
and
By the Triangle Inequality,
and
, and
That means
See Also
| 1997 JBMO (Problems • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All JBMO Problems and Solutions | ||