Art of Problem Solving

Mock AIME 2 2006-2007 Problems/Problem 5: Difference between revisions

4everwise (talk | contribs)
No edit summary
mNo edit summary
Line 2: Line 2:


Given that <math>\displaystyle  iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots</math> and <math>\displaystyle z=n\pm \sqrt{-i},</math> find <math>\displaystyle  \lfloor 100n \rfloor.</math>
Given that <math>\displaystyle  iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots</math> and <math>\displaystyle z=n\pm \sqrt{-i},</math> find <math>\displaystyle  \lfloor 100n \rfloor.</math>
==Solution==
{{solution}}
----
*[[Mock AIME 2 2006-2007/Problem 4 | Previous Problem]]
*[[Mock AIME 2 2006-2007/Problem 6 | Next Problem]]
*[[Mock AIME 2 2006-2007]]

Revision as of 18:47, 22 August 2006

Problem

Given that $\displaystyle  iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots$ and $\displaystyle z=n\pm \sqrt{-i},$ find $\displaystyle  \lfloor 100n \rfloor.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.