Art of Problem Solving

2017 AMC 12A Problems/Problem 15: Difference between revisions

problem
 
Line 1: Line 1:
==Problem==
==Problem==


Let <math>f(x) = sinx + 2cosx + 3tanx</math>, using radian measure for the variable <math>x</math>. In what interval does the smallest positive value of <math>x</math> for which <math>f(x) = 0</math> lie?
Let <math>f(x) = \sin{x} + 2\cos{x} + 3\tan{x}</math>, using radian measure for the variable <math>x</math>. In what interval does the smallest positive value of <math>x</math> for which <math>f(x) = 0</math> lie?


<math> \textbf{(A)}\ (0,1)  
<math> \textbf{(A)}\ (0,1)  

Revision as of 16:58, 8 February 2017

Problem

Let $f(x) = \sin{x} + 2\cos{x} + 3\tan{x}$, using radian measure for the variable $x$. In what interval does the smallest positive value of $x$ for which $f(x) = 0$ lie?

$\textbf{(A)}\ (0,1)  \qquad \textbf{(B)}\ (1, 2) \qquad\textbf{(C)}\ (2, 3) \qquad\textbf{(D)}\ (3, 4) \qquad\textbf{(E)}\ (4,5)$