1994 AJHSME Problems/Problem 25: Difference between revisions
Undo revision 80689 by Soccerpro101 (talk) |
|||
| Line 13: | Line 13: | ||
Notice that: | Notice that: | ||
<math>9 | <math>9 \cdot 4 = 36</math> and <math>3+6 = 9 = 9 \cdot 1</math> | ||
<math>99 | <math>99 \cdot 44 = 4356</math> and <math>4+5+3+6 = 18 = 9 \cdot 2</math> | ||
So the sum of the digits of x 9s times x 4s is simply <math>x | So the sum of the digits of <math>x</math> 9s times <math>x</math> 4s is simply <math>x \cdot 9</math>. | ||
Therefore the answer is <math>94 | Therefore the answer is <math>94 \cdot 9 = \boxed{\text{(A)}\ 846.}</math> | ||
==See Also== | ==See Also== | ||
{{AJHSME box|year=1994|num-b=24|after=Last <br /> Problem}} | {{AJHSME box|year=1994|num-b=24|after=Last <br /> Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 22:55, 20 October 2016
Problem
Find the sum of the digits in the answer to
where a string of
nines is multiplied by a string of
fours.
Solution
Notice that:
and
and
So the sum of the digits of
9s times
4s is simply
.
Therefore the answer is
See Also
| 1994 AJHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 24 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.