2016 AMC 12B Problems/Problem 25: Difference between revisions
Zhuangzhuang (talk | contribs) |
|||
| Line 4: | Line 4: | ||
<math>\textbf{(A)}\ 17\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 21</math> | <math>\textbf{(A)}\ 17\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 21</math> | ||
==Solution== | ==Solution 1== | ||
Let <math>b_i=19\text{log}_2a_i</math>. Then <math>b_0=0, b_1=1,</math> and <math>b_n=b_{n-1}+2b_{n-2}</math> for all <math>n\geq 2</math>. The characteristic polynomial of this linear recurrence is <math>x^2-x-2=0</math>, which has roots <math>2</math> and <math>-1</math>. | Let <math>b_i=19\text{log}_2a_i</math>. Then <math>b_0=0, b_1=1,</math> and <math>b_n=b_{n-1}+2b_{n-2}</math> for all <math>n\geq 2</math>. The characteristic polynomial of this linear recurrence is <math>x^2-x-2=0</math>, which has roots <math>2</math> and <math>-1</math>. | ||
| Line 24: | Line 24: | ||
Now, assume <math>k</math> is odd. Then the sum (again adjusted by a factor of three) is <math>2^1+2^2+\cdots+2^k+1=2^{k+1}-1</math>. The smallest <math>k</math> for which this is a multiple of <math>19</math> is <math>k=17</math>, by the same reasons. Thus, the minimal value of <math>k</math> is <math>\textbf{(A) } 17</math>. | Now, assume <math>k</math> is odd. Then the sum (again adjusted by a factor of three) is <math>2^1+2^2+\cdots+2^k+1=2^{k+1}-1</math>. The smallest <math>k</math> for which this is a multiple of <math>19</math> is <math>k=17</math>, by the same reasons. Thus, the minimal value of <math>k</math> is <math>\textbf{(A) } 17</math>. | ||
==Solution 2== | |||
Since the product <math>a_1a_2\cdots a_k</math> is an integer, the sum of the logarithms <math>\log _2 a_k</math> must be an integer. Multiply all of these logarithms by <math>19</math>, so that the sum must be a multiple of <math>19</math>. We take these vales modulo <math>19</math> to save calculation time. Using the recursion <math>a_n=a_{n-1}a_{n-2}^2</math>: | |||
<cmath>a_0=0,a_1=1\dots\implies 0,1,1,3,5,11,2,5,9,0,18,18,16,14,10,17,14,10,0\dots</cmath> | |||
Notice that <math>a_k+a_{k+9}\equiv 0\text{ mod }19</math>. The cycle repeats every <math>9+9=18</math> terms. Since <math>a_0=0</math> and <math>a_{18}=0</math>, we only need the first <math>17</math> terms to sum up to a multiple of <math>19</math>: <math>\boxed{\textbf{(A) }17}</math>. | |||
<math>a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}a_{12}a_{13}a_{14}a_{15}a_{16}a_{17}=2^{87381/19}=2^{4599}\approx 2.735\cdot 10{1384}</math> | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2016|ab=B|after=Last Problem|num-b=24}} | {{AMC12 box|year=2016|ab=B|after=Last Problem|num-b=24}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 20:44, 21 February 2016
Problem
The sequence
is defined recursively by
,
, and
for
. What is the smallest positive integer
such that the product
is an integer?
Solution 1
Let
. Then
and
for all
. The characteristic polynomial of this linear recurrence is
, which has roots
and
.
Therefore,
for constants to be determined
. Using the fact that
we can solve a pair of linear equations for
:
.
Thus
,
, and
.
Now,
, so we are looking for the least value of
so that
.
Note that we can multiply all
by three for convenience, as the
are always integers, and it does not affect divisibility by
.
Now, for all even
the sum (adjusted by a factor of three) is
. The smallest
for which this is a multiple of
is
by Fermat's Little Theorem, as it is seen with further testing that
is a primitive root
.
Now, assume
is odd. Then the sum (again adjusted by a factor of three) is
. The smallest
for which this is a multiple of
is
, by the same reasons. Thus, the minimal value of
is
.
Solution 2
Since the product
is an integer, the sum of the logarithms
must be an integer. Multiply all of these logarithms by
, so that the sum must be a multiple of
. We take these vales modulo
to save calculation time. Using the recursion
:
Notice that
. The cycle repeats every
terms. Since
and
, we only need the first
terms to sum up to a multiple of
:
.
See Also
| 2016 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 24 |
Followed by Last Problem |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.