2016 AMC 10B Problems/Problem 1: Difference between revisions
No edit summary |
|||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
What is the value of <math>\frac{2a^{-1}+\frac{a^{-1}}{2}}{a}</math> when <math>a= \ | What is the value of <math>\frac{2a^{-1}+\frac{a^{-1}}{2}}{a}</math> when <math>a= \tfrac{1}{2}</math>? | ||
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{5}{2}\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20</math> | <math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{5}{2}\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20</math> | ||
==Solution== | ==Solution== | ||
<math>\frac{\frac{1}{a} | Factorizing the numerator, <math>\frac{\frac{1}{a}\cdot(2+\frac{1}{2})}{a}</math> then becomes <math>\frac{\frac{5}{2}}{a^{2}}</math> which is equal to <math>\frac{5}{2}\cdot 2^2</math> which is <math>\textbf{(D) }10</math>. | ||
Solution by ngeorge | Solution by ngeorge | ||
==See Also== | |||
{{AMC10 box|year=2016|ab=B|before=-|num-a=2}} | |||
{{MAA Notice}} | |||
Revision as of 10:45, 21 February 2016
Problem
What is the value of
when
?
Solution
Factorizing the numerator,
then becomes
which is equal to
which is
.
Solution by ngeorge
See Also
| 2016 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by - |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.