2016 AMC 12A Problems/Problem 23: Difference between revisions
Added a third geometry-based solution. |
|||
| Line 25: | Line 25: | ||
<math>a<b</math> is the same. Thus the answer is <math>\frac{1}{2}</math>. | <math>a<b</math> is the same. Thus the answer is <math>\frac{1}{2}</math>. | ||
===Solution 3: Geometry=== | |||
The probability of this occurring is the volume of the corresponding region within a <math>1 \times 1 \times 1</math> cube, where each point <math>(x,y,z)</math> corresponds to a choice of values for each of <math>x, y,</math> and <math>z</math>. The region where, WLOG, side <math>z</math> is too long, <math>z\geq x+y</math>, is a pyramid with a base of area <math>\frac{1}{2}</math> and height <math>1</math>, so its volume is <math>\frac{\frac{1}{2}\cdot 1}{3}=\frac{1}{6}</math>. Accounting for the corresponding cases in <math>x</math> and <math>y</math> multiplies our answer by <math>3</math>, so we have excluded a total volume of <math>\frac{1}{2}</math> from the space of possible probabilities. Subtracting this from <math>1</math> leaves us with a final answer of <math>\frac{1}{2}</math>. | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2016|ab=A|num-b=22|num-a=24}} | {{AMC12 box|year=2016|ab=A|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 14:28, 5 February 2016
Problem
Three numbers in the interval
are chosen independently and at random. What is the probability that the chosen numbers are the side lengths of a triangle with positive area?
Solution
Solution 1: Logic
WLOG the largest number is 1. Then the probability that the other two add up to at least 1 is
.
Thus the answer is
.
Solution 2: Calculus
When
, consider two cases:
1)
, then
2)
, then
is the same. Thus the answer is
.
Solution 3: Geometry
The probability of this occurring is the volume of the corresponding region within a
cube, where each point
corresponds to a choice of values for each of
and
. The region where, WLOG, side
is too long,
, is a pyramid with a base of area
and height
, so its volume is
. Accounting for the corresponding cases in
and
multiplies our answer by
, so we have excluded a total volume of
from the space of possible probabilities. Subtracting this from
leaves us with a final answer of
.
See Also
| 2016 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 22 |
Followed by Problem 24 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.