2016 AMC 10A Problems/Problem 19: Difference between revisions
m Not the same problem |
|||
| Line 28: | Line 28: | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | {{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 11:24, 5 February 2016
Problem
In rectangle
and
. Point
between
and
, and point
between
and
are such that
. Segments
and
intersect
at
and
, respectively. The ratio
can be written as
where the greatest common factor of
and
is
What is
?
Solution
Since
Similarly,
. Call the hypotonuse
. This means that
. Applying similar triangles to
and
, we see that
. Thus
. Therefore,
so
See Also
| 2016 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 18 |
Followed by Problem 20 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.