2010 AMC 10A Problems/Problem 14: Difference between revisions
m →Problem |
mNo edit summary |
||
| Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
<asy> | |||
pair A,B,C,D,E,F,G,H; | |||
G=(0,10); | |||
A=(0,3.464); | |||
B=(6,0); | |||
C=(0,0); | |||
draw(A--B--C--cycle); | |||
F=(1,1.73); | |||
E=(2,0); | |||
draw(C--F--E); | |||
D=(1.5,2.6); | |||
draw(C--D); | |||
label("$A$",A,W); | |||
label("$B$",B,S); | |||
label("$C$",C,S); | |||
label("$F$",F,N); | |||
label("$D$",D,NE); | |||
label("$E$",E,S); | |||
draw(A--E); | |||
draw(anglemark(E,A,B)); | |||
draw(anglemark(D,C,A)); | |||
</asy> | |||
Let <math>\angle BAE = \angle ACD = x</math>. | Let <math>\angle BAE = \angle ACD = x</math>. | ||
Revision as of 12:19, 13 August 2017
Problem
Triangle
has
. Let
and
be on
and
, respectively, such that
. Let
be the intersection of segments
and
, and suppose that
is equilateral. What is
?
Solution
Let
.
Since
,
See also
| 2010 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.