2002 AMC 10A Problems/Problem 20: Difference between revisions
m →Problem |
|||
| Line 30: | Line 30: | ||
==Solution== | ==Solution== | ||
Solution #1: | Solution <math>\text{#1}: | ||
Since <math>AG< | Since </math>AG<math> and </math>CH<math> are parallel, triangles </math>GAD<math> and </math>HCD<math> are similar. Hence, </math>CH/AG = CD/AD = 1/3<math>. | ||
Since <math>AG< | Since </math>AG<math> and </math>JE<math> are parallel, triangles </math>GAF<math> and </math>JEF<math> are similar. Hence, </math>EJ/AG = EF/AF = 1/5<math>. Therefore, </math>CH/EJ = (CH/AG)/(EJ/AG) = (1/3)/(1/5) = \boxed{5/3}<math>. The answer is (D). | ||
Solution #2: | Solution \text{#2}: | ||
As <math>\overline{JE}< | As </math>\overline{JE}<math> is parallel to </math>\overline{AG}<math>, angles FJE and FGA are congruent. Also, angle F is clearly congruent to itself. From AA similarity, </math>\triangle AGF \sim \triangle EJF<math>; hence </math>\frac {AG}{JE} =5<math>. Similarly, </math>\frac {AG}{HC} = 3<math>. Thus, </math>\frac {HC}{JE} = \boxed{\frac {5}{3}\Rightarrow \text{(D)}}$. | ||
==See Also== | ==See Also== | ||
Revision as of 17:24, 28 November 2015
Problem
Points
and
lie, in that order, on
, dividing it into five segments, each of length 1. Point
is not on line
. Point
lies on
, and point
lies on
. The line segments
and
are parallel. Find
.
A
B
C
D
E
F
J
G
H
Solution
Solution $\text{#1}:
Since$ (Error compiling LaTeX. Unknown error_msg)AG
CH
GAD
HCD
CH/AG = CD/AD = 1/3$.
Since$ (Error compiling LaTeX. Unknown error_msg)AG
JE
GAF
JEF
EJ/AG = EF/AF = 1/5
CH/EJ = (CH/AG)/(EJ/AG) = (1/3)/(1/5) = \boxed{5/3}$. The answer is (D).
Solution \text{#2}:
As$ (Error compiling LaTeX. Unknown error_msg)\overline{JE}
\overline{AG}
\triangle AGF \sim \triangle EJF
\frac {AG}{JE} =5
\frac {AG}{HC} = 3
\frac {HC}{JE} = \boxed{\frac {5}{3}\Rightarrow \text{(D)}}$.
See Also
| 2002 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.