2015 AMC 8 Problems/Problem 13: Difference between revisions
Created page with "How many subsets of two elements can be removed from the set <math>\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}</math> so that the mean (average) of the remaining numbers is 6? <mat..." |
No edit summary |
||
| Line 2: | Line 2: | ||
<math>\textbf{(A)}\text{ 1}\qquad\textbf{(B)}\text{ 2}\qquad\textbf{(C)}\text{ 3}\qquad\textbf{(D)}\text{ 5}\qquad\textbf{(E)}\text{ 6}</math> | <math>\textbf{(A)}\text{ 1}\qquad\textbf{(B)}\text{ 2}\qquad\textbf{(C)}\text{ 3}\qquad\textbf{(D)}\text{ 5}\qquad\textbf{(E)}\text{ 6}</math> | ||
==Solution== | |||
Since there will be <math>9</math> elements after removal, and their mean is <math>6</math>, we know their sum is <math>54</math>. We also know that the sum of the set pre-removal is <math>66</math>. Thus, the sum of the <math>2</math> elements removed is <math>66-54=12</math>. There are only <math>5</math> subsets of <math>2</math> elements that sum to <math>12</math>: <math>\{1,11\}, \{2,10\}, \{3, 9\}, \{4, 8\}, \{5, 7\}</math>. Therefore, our answer is <math>\textbf{(D)}\text{ 5}</math>. | |||
Revision as of 15:12, 25 November 2015
How many subsets of two elements can be removed from the set
so that the mean (average) of the remaining numbers is 6?
Solution
Since there will be
elements after removal, and their mean is
, we know their sum is
. We also know that the sum of the set pre-removal is
. Thus, the sum of the
elements removed is
. There are only
subsets of
elements that sum to
:
. Therefore, our answer is
.