2002 AMC 10A Problems/Problem 20: Difference between revisions
| Line 3: | Line 3: | ||
<math>\text{(A)}\ 5/4 \qquad \text{(B)}\ 4/3 \qquad \text{(C)}\ 3/2 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 2</math> | <math>\text{(A)}\ 5/4 \qquad \text{(B)}\ 4/3 \qquad \text{(C)}\ 3/2 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 2</math> | ||
[asy] | |||
pair A,B,C,D,EE,F,G,H,J; | |||
A = (0,0); | |||
B = (0.2,0); | |||
C = 2*B; | |||
D = 3*B; | |||
EE = 4*B; | |||
F = 5*B; | |||
G = (-0.2,0.8); | |||
H = intersectionpoint(G--D,C -- (C + G)); | |||
J = intersectionpoint(G--F,EE--(EE+G)); | |||
draw(G--F--A--G--B); | |||
draw(H--C--G--D); | |||
draw(J--EE--G); | |||
label("<math>A</math>",A,SW); | |||
label("<math>B</math>",B,S); | |||
label("<math>C</math>",C,S); | |||
label("<math>D</math>",D,S); | |||
label("<math>E</math>",EE,S); | |||
label("<math>F</math>",F,SE); | |||
label("<math>J</math>",J,NE); | |||
label("<math>G</math>",G,N); | |||
label(scale(0.9)*"<math>H</math>",H,NE,UnFill(0.1mm)); | |||
[/asy] | |||
==Solution== | ==Solution== | ||
Revision as of 19:30, 5 November 2015
Problem
Points
and
lie, in that order, on
, dividing it into five segments, each of length 1. Point
is not on line
. Point
lies on
, and point
lies on
. The line segments
and
are parallel. Find
.
[asy]
pair A,B,C,D,EE,F,G,H,J;
A = (0,0);
B = (0.2,0);
C = 2*B;
D = 3*B;
EE = 4*B;
F = 5*B;
G = (-0.2,0.8);
H = intersectionpoint(G--D,C -- (C + G));
J = intersectionpoint(G--F,EE--(EE+G));
draw(G--F--A--G--B);
draw(H--C--G--D);
draw(J--EE--G);
label("
",A,SW);
label("
",B,S);
label("
",C,S);
label("
",D,S);
label("
",EE,S);
label("
",F,SE);
label("
",J,NE);
label("
",G,N);
label(scale(0.9)*"
",H,NE,UnFill(0.1mm));
[/asy]
Solution
Solution #1:
Since
and
are parallel, triangles
and
are similar. Hence,
.
Since
and
are parallel, triangles
and
are similar. Hence,
. Therefore,
. The answer is (D).
Solution #2:
As
is parallel to
, angles FJE and FGA are congruent. Also, angle F is clearly congruent to itself. From AA similarity,
; hence
. Similarly,
. Thus,
.
See Also
| 2002 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.