Art of Problem Solving

2015 AIME II Problems/Problem 8: Difference between revisions

Swe1 (talk | contribs)
Create Page
 
Swe1 (talk | contribs)
m Add Solution Section
Line 1: Line 1:
==Problem 8==
==Problem==


Let <math>a</math> and <math>b</math> be positive integers satisfying <math>\frac{ab+1}{a+b} < \frac{3}{2}</math>. The maximum possible value of <math>\frac{a^3b^3+1}{a^3+b^3}</math> is <math>\frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
Let <math>a</math> and <math>b</math> be positive integers satisfying <math>\frac{ab+1}{a+b} < \frac{3}{2}</math>. The maximum possible value of <math>\frac{a^3b^3+1}{a^3+b^3}</math> is <math>\frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
==Solution==

Revision as of 18:25, 26 March 2015

Problem

Let $a$ and $b$ be positive integers satisfying $\frac{ab+1}{a+b} < \frac{3}{2}$. The maximum possible value of $\frac{a^3b^3+1}{a^3+b^3}$ is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution