2015 AIME I Problems/Problem 7: Difference between revisions
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
==Problem== | ==Problem== | ||
We begin by denoting the length <math>ED</math> <math>a</math>, giving us <math>DC = 2a</math> and <math>EC = a\sqrt5</math>. Since angles <math>\angle DCE</math> and <math>\angle FCJ</math> are complimentary, we have that <math>\triangle CDE ~ \triangle JFC</math> (and similarly the rest of the triangles are <math>1-2-\sqrt5</math> triangles). We let the sidelength of <math>FGHJ</math> be <math>b</math>, giving us <math>JC = \sqrt5 * FC = \sqrt5 * FJ/2 = \frac{b\sqrt 5}{2}</math> and <math>BJ = \frac{1}{\sqrt5} * HJ = \frac{a | We begin by denoting the length <math>ED</math> <math>a</math>, giving us <math>DC = 2a</math> and <math>EC = a\sqrt5</math>. Since angles <math>\angle DCE</math> and <math>\angle FCJ</math> are complimentary, we have that <math>\triangle CDE ~ \triangle JFC</math> (and similarly the rest of the triangles are <math>1-2-\sqrt5</math> triangles). We let the sidelength of <math>FGHJ</math> be <math>b</math>, giving us | ||
<math>JC = \sqrt5 * FC = \sqrt5 * FJ/2 = \frac{b\sqrt 5}{2}</math> and <math>BJ = \frac{1}{\sqrt5} * HJ = \frac{b}{\sqrt5}</math>. | |||
Since <math>BC = CJ + JC</math>, | |||
<math>2a = \frac{b\sqrt 5}{2} + \frac{b}{\sqrt5}</math>, | |||
Solving for <math>b</math> in terms of <math>a</math> yields <math>b = \frac{4a\sqrt5}{7}</math>. | |||
Revision as of 16:50, 20 March 2015
Problem
7. In the diagram below,
is a square. Point
is the midpoint of
. Points
and
lie on
, and
and
lie on
and
, respectively, so that
is a square. Points
and
lie on
, and
and
lie on
and
, respectively, so that
is a square. The area of
is 99. Find the area of
.
Problem
We begin by denoting the length
, giving us
and
. Since angles
and
are complimentary, we have that
(and similarly the rest of the triangles are
triangles). We let the sidelength of
be
, giving us
and
.
Since
,
,
Solving for
in terms of
yields
.