2010 AMC 10B Problems/Problem 18: Difference between revisions
No edit summary |
Flamedragon (talk | contribs) |
||
| Line 4: | Line 4: | ||
<math>\textbf{(A)}\ \dfrac{1}{3} \qquad \textbf{(B)}\ \dfrac{29}{81} \qquad \textbf{(C)}\ \dfrac{31}{81} \qquad \textbf{(D)}\ \dfrac{11}{27} \qquad \textbf{(E)}\ \dfrac{13}{27}</math> | <math>\textbf{(A)}\ \dfrac{1}{3} \qquad \textbf{(B)}\ \dfrac{29}{81} \qquad \textbf{(C)}\ \dfrac{31}{81} \qquad \textbf{(D)}\ \dfrac{11}{27} \qquad \textbf{(E)}\ \dfrac{13}{27}</math> | ||
==Solution | ==Solution== | ||
First we factor <math>abc+ab+a</math> into <math>a(b(c+1)+1)</math>. For <math>a(b(c+1)+1)</math> to be divisible by three we can either have <math>a</math> be a multiple of 3 or <math>b(c+1)+1</math> be a multiple of three. Adding the probability of these two being divisible by 3 we get that the probability is <math>\boxed{\textbf{(E)}\ \frac{13}{27}}</math> | First we factor <math>abc+ab+a</math> into <math>a(b(c+1)+1)</math>. For <math>a(b(c+1)+1)</math> to be divisible by three we can either have <math>a</math> be a multiple of 3 or <math>b(c+1)+1</math> be a multiple of three. Adding the probability of these two being divisible by 3 we get that the probability is <math>\boxed{\textbf{(E)}\ \frac{13}{27}}</math> | ||
Revision as of 21:24, 9 February 2014
Problem
Positive integers
,
, and
are randomly and independently selected with replacement from the set
. What is the probability that
is divisible by
?
Solution
First we factor
into
. For
to be divisible by three we can either have
be a multiple of 3 or
be a multiple of three. Adding the probability of these two being divisible by 3 we get that the probability is
See Also
| 2010 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 17 |
Followed by Problem 19 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.