Art of Problem Solving

1950 AHSME Problems/Problem 34: Difference between revisions

Nathan wailes (talk | contribs)
No edit summary
Line 11: Line 11:
When the circumference of a circle is increased by a percentage, the radius is also increased by the same percentage (or else the ratio of the circumference to the diameter wouldn't be <math>\pi</math> anymore)
When the circumference of a circle is increased by a percentage, the radius is also increased by the same percentage (or else the ratio of the circumference to the diameter wouldn't be <math>\pi</math> anymore)
We see that the circumference was increased by <math>25\%</math>. This means the radius was also increased by <math>25\%</math>. The radius of the original balloon is <math>\frac{20}{2\pi}=\frac{10}{\pi}</math>. With the <math>25\%</math> increase, it becomes <math>\frac{12.5}{\pi}</math>. The increase is <math>\frac{12.5-10}{\pi}=\frac{2.5}{\pi}=\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}</math>
We see that the circumference was increased by <math>25\%</math>. This means the radius was also increased by <math>25\%</math>. The radius of the original balloon is <math>\frac{20}{2\pi}=\frac{10}{\pi}</math>. With the <math>25\%</math> increase, it becomes <math>\frac{12.5}{\pi}</math>. The increase is <math>\frac{12.5-10}{\pi}=\frac{2.5}{\pi}=\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}</math>
==Solution 2==
The radii of the circle are <math>\frac{20}{2\pi}</math> and <math>\frac{25}{2\pi}</math>, respectively. The positive difference is therefore <math>\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}</math>.


==See Also==
==See Also==

Revision as of 19:58, 20 March 2018

Problem

When the circumference of a toy balloon is increased from $20$ inches to $25$ inches, the radius is increased by:

$\textbf{(A)}\ 5\text{ in} \qquad \textbf{(B)}\ 2\dfrac{1}{2}\text{ in} \qquad \textbf{(C)}\ \dfrac{5}{\pi}\text{ in} \qquad \textbf{(D)}\ \dfrac{5}{2\pi}\text{ in} \qquad \textbf{(E)}\ \dfrac{\pi}{5}\text{ in}$

Solution

When the circumference of a circle is increased by a percentage, the radius is also increased by the same percentage (or else the ratio of the circumference to the diameter wouldn't be $\pi$ anymore) We see that the circumference was increased by $25\%$. This means the radius was also increased by $25\%$. The radius of the original balloon is $\frac{20}{2\pi}=\frac{10}{\pi}$. With the $25\%$ increase, it becomes $\frac{12.5}{\pi}$. The increase is $\frac{12.5-10}{\pi}=\frac{2.5}{\pi}=\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}$

Solution 2

The radii of the circle are $\frac{20}{2\pi}$ and $\frac{25}{2\pi}$, respectively. The positive difference is therefore $\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}$.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.