2002 AIME II Problems/Problem 13: Difference between revisions
No edit summary |
|||
| Line 2: | Line 2: | ||
In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 3,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 3,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
== Solution == | == Solution 1 == | ||
Let <math>X</math> be the intersection of <math>\overline{CP}</math> and <math>\overline{AB}</math>. | Let <math>X</math> be the intersection of <math>\overline{CP}</math> and <math>\overline{AB}</math>. | ||
| Line 58: | Line 58: | ||
<math>W_P=W_C+W_X=15+11=26</math>. | <math>W_P=W_C+W_X=15+11=26</math>. | ||
Thus, <math>\frac{PX}{CX}=\frac{W_C}{W_P}=\frac{15}{26}</math>. Therefore, <math>\frac{[\Delta PQR]}{[\Delta ABC]} = \left( \frac{15}{26} \right)^2 = \frac{225}{676}</math>, and <math>m+n=\boxed{901}</math>. | Thus, <math>\frac{PX}{CX}=\frac{W_C}{W_P}=\frac{15}{26}</math>. Therefore, <math>\frac{[\Delta PQR]}{[\Delta ABC]} = \left( \frac{15}{26} \right)^2 = \frac{225}{676}</math>, and <math>m+n=\boxed{901}</math>. | ||
== Solution 2 == | |||
First draw <math>\overline{CP}</math> and extend it so that it meets with <math>\overline{AB}</math> at point <math>X</math>. | |||
[asy] size(10cm); pair A,B,C,D,E,X,P,Q,R; A=(0,0); B=(8,0); C=(1.9375,3.4994); D=(3.6696,2.4996); E=(1.4531,2.6246); X=(4.3636,0); P=(2.9639,2.0189); Q=(1.8462,0); R=(6.4615,0); dot(A); dot(B); dot(C); dot(D); dot(E); dot(X); dot(P); dot(Q); dot(R); label("<math>A</math>",A,WSW); label("<math>B</math>",B,ESE); label("<math>C</math>",C,NNW); label("<math>D</math>",D,NE); label("<math>E</math>",E,WNW); label("<math>X</math>",X,SSE); label("<math>P</math>",P,NNE); label("<math>Q</math>",Q,SSW); label("<math>R</math>",R,SE); draw(A--B--C--cycle); draw(P--Q--R--cycle); draw(A--D); draw(B--E); draw(C--X); [/asy] | |||
We have that <math>[ABC]=\frac{1}{2}\cdot AC \cdot BC\sin{C}=\frac{1}{2}\cdot 4\cdot {7}\sin{C}=14\sin{C}</math> | |||
By Ceva's, <cmath>3\cdot{\frac{2}{5}}\cdot{\frac{BX}{AX}}=1\implies BX=\frac{5\cdot AX}{6}</cmath> That means that <cmath> \frac{11\cdot {AX}}{6}=8\implies AX=\frac{48}{11} \ \text{and} \ BX=\frac{40}{11}</cmath> | |||
Now we apply mass points. Assume WLOG that <math>W_{A}=1</math>. That means that | |||
<cmath>W_{C}=3, W_{B}=\frac{6}{5}, W_{X}=\frac{11}{5}, W_{D}=\frac{21}{5}, W_{E}=4, W_{P}=\frac{26}{5}</cmath> | |||
Notice now that <math>\triangle{PBQ}</math> is similar to <math>\triangle{EBA}</math>. Therefore, | |||
<cmath>\frac{PQ}{EA}=\frac{PB}{EB}\implies \frac{PQ}{3}=\frac{10}{13}\implies PQ=\frac{30}{13}</cmath> | |||
Also, <math>\triangle{PRA}</math> is similar to <math>\triangle{DBA}</math>. Therefore, | |||
<cmath>\frac{PA}{DA}=\frac{PR}{DB}\implies \frac{21}{26}=\frac{PR}{5}\implies PR=\frac{105}{26}</cmath> | |||
Because <math>\triangle{PQR}</math> is similar to <math>\triangle{CAB}</math>, <math>\angle{C}=\angle{P}</math>. | |||
As a result, <math>[PQR]=\frac{1}{2}\cdot PQ \cdot PR \sin{C}=\frac{1}{2}\cdot \frac{30}{13}\cdot \frac{105}{26}\sin{P}=\frac{1575}{338}\sin{C}</math>. | |||
Therefore, <cmath>\frac{[PQR]}{[ABC]}=\frac{\frac{1575}{338}\sin{C}}{14\sin{C}}=\frac{225}{676}\implies 225+676=\boxed{901}</cmath> | |||
== See also == | == See also == | ||
{{AIME box|year=2002|n=II|num-b=12|num-a=14}} | {{AIME box|year=2002|n=II|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 17:42, 12 September 2015
Problem
In triangle
point
is on
with
and
point
is on
with
and
and
and
intersect at
Points
and
lie on
so that
is parallel to
and
is parallel to
It is given that the ratio of the area of triangle
to the area of triangle
is
where
and
are relatively prime positive integers. Find
.
Solution 1
Let
be the intersection of
and
.
Since
and
,
and
. So
, and thus,
.
Using mass points:
WLOG, let
.
Then:
.
.
.
.
Thus,
. Therefore,
, and
.
Solution 2
First draw
and extend it so that it meets with
at point
.
[asy] size(10cm); pair A,B,C,D,E,X,P,Q,R; A=(0,0); B=(8,0); C=(1.9375,3.4994); D=(3.6696,2.4996); E=(1.4531,2.6246); X=(4.3636,0); P=(2.9639,2.0189); Q=(1.8462,0); R=(6.4615,0); dot(A); dot(B); dot(C); dot(D); dot(E); dot(X); dot(P); dot(Q); dot(R); label("
",A,WSW); label("
",B,ESE); label("
",C,NNW); label("
",D,NE); label("
",E,WNW); label("
",X,SSE); label("
",P,NNE); label("
",Q,SSW); label("
",R,SE); draw(A--B--C--cycle); draw(P--Q--R--cycle); draw(A--D); draw(B--E); draw(C--X); [/asy]
We have that
By Ceva's,
That means that
Now we apply mass points. Assume WLOG that
. That means that
Notice now that
is similar to
. Therefore,
Also,
is similar to
. Therefore,
Because
is similar to
,
.
As a result,
.
Therefore,
See also
| 2002 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.