Art of Problem Solving

1979 USAMO Problems/Problem 1: Difference between revisions

Etude (talk | contribs)
mNo edit summary
No edit summary
Line 2: Line 2:
Determine all non-negative integral solutions <math>(n_1,n_2,\dots , n_{14})</math> if any, apart from permutations, of the Diophantine Equation <math>n_1^4+n_2^4+\cdots +n_{14}^4=1599</math>.
Determine all non-negative integral solutions <math>(n_1,n_2,\dots , n_{14})</math> if any, apart from permutations, of the Diophantine Equation <math>n_1^4+n_2^4+\cdots +n_{14}^4=1599</math>.


== Solution ==
== Solution 1==
Recall that <math>n_i^4\equiv 0,1\bmod{16}</math> for all integers <math>n_i</math>. Thus the sum we have is anything from 0 to 14 modulo 16. But <math>1599\equiv 15\bmod{16}</math>, and thus there are no integral solutions to the given Diophantine equation.
Recall that <math>n_i^4\equiv 0,1\bmod{16}</math> for all integers <math>n_i</math>. Thus the sum we have is anything from 0 to 14 modulo 16. But <math>1599\equiv 15\bmod{16}</math>, and thus there are no integral solutions to the given Diophantine equation.


{{alternate solutions}}
{{alternate solutions}}
== Solution  2==
In base <math>16</math>, this equation would look like:
<cmath>n_1^4+n_2^4+\cdots +n_{14}^4=63F_{16}</cmath>
We notice that the unit digits of the LHS of this equation should equal to <math>F_{16}</math>. In base <math>16</math>, the only unit digits of fourth powers are <math>0</math> and <math>1</math>. Thus, the maximum of these <math>14</math> terms is 14 <math>1's</math> or <math>E_{16}</math>. Since <math>E_{16}</math> is less than <math>F_{16}</math>, there are no integral solutions for this equation.


== See Also ==
== See Also ==

Revision as of 09:00, 30 July 2016

Problem

Determine all non-negative integral solutions $(n_1,n_2,\dots , n_{14})$ if any, apart from permutations, of the Diophantine Equation $n_1^4+n_2^4+\cdots +n_{14}^4=1599$.

Solution 1

Recall that $n_i^4\equiv 0,1\bmod{16}$ for all integers $n_i$. Thus the sum we have is anything from 0 to 14 modulo 16. But $1599\equiv 15\bmod{16}$, and thus there are no integral solutions to the given Diophantine equation.

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Solution 2

In base $16$, this equation would look like: \[n_1^4+n_2^4+\cdots +n_{14}^4=63F_{16}\]

We notice that the unit digits of the LHS of this equation should equal to $F_{16}$. In base $16$, the only unit digits of fourth powers are $0$ and $1$. Thus, the maximum of these $14$ terms is 14 $1's$ or $E_{16}$. Since $E_{16}$ is less than $F_{16}$, there are no integral solutions for this equation.

See Also

1979 USAMO (ProblemsResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.