Art of Problem Solving

2013 AMC 10B Problems/Problem 25: Difference between revisions

Mcr23 (talk | contribs)
Created page with "==Problem=="
 
Line 1: Line 1:
==Problem==
==Problem==
Bernardo chooses a three-digit positive integer <math>N</math> and writes both its base-5 and base-6 representations on a blackboard. Later LeRoy sees the two numbers Bernardo has written. Treating the two numbers as base-10 integers, he adds them to obtain an integer <math>S</math>. For example, if <math>N = 749</math>, Bernardo writes the numbers <math>10,444</math> and <math>3,245</math>, and LeRoy obtains the sum <math>S = 13,689</math>. For how many choices of <math>n</math> are the two rightmost digits of <math>S</math>, in order, the same as those of <math>2N</math>?
<math> \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 25</math>
==Solution==

Revision as of 16:32, 21 February 2013

Problem

Bernardo chooses a three-digit positive integer $N$ and writes both its base-5 and base-6 representations on a blackboard. Later LeRoy sees the two numbers Bernardo has written. Treating the two numbers as base-10 integers, he adds them to obtain an integer $S$. For example, if $N = 749$, Bernardo writes the numbers $10,444$ and $3,245$, and LeRoy obtains the sum $S = 13,689$. For how many choices of $n$ are the two rightmost digits of $S$, in order, the same as those of $2N$?

$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 25$

Solution