Art of Problem Solving

Viviani's theorem: Difference between revisions

I am creating the page for Viviani's theorem. I will add a proof next.
 
No edit summary
Line 1: Line 1:
The '''Viviani's Theorem''' states that for an equilateral triangle, the sum of the altitudes from each point in the triangle is equal to the altitude from a vertex of a triangle to the other side.
The '''Viviani's Theorem''' states that for an equilateral triangle, the sum of the altitudes from any point in the triangle is equal to the altitude from a vertex of the triangle to the other side.
 
== Proof ==
 
Let <math>\triangle ABC</math> be an equilateral triangle and <math>P</math> be a point inside the triangle.
<asy>
pair A,B,C,P,X,Y,Z;
real s=12*sqrt(3);
A=(0,0); C=(s,0); B=(s/2,s/2*sqrt(3)); P=(9.5,7); X= foot(P,B,C); Y=foot(P,A,B); Z=foot(P,A,C);
draw(A--B--C--cycle); draw(P--Z); draw(P--Y); draw(P--X); draw(P--A); draw(P--B); draw(P--C);
draw(rightanglemark(P,X,B,25)); draw(rightanglemark(P,Z,C,25)); draw(rightanglemark(P,Y,A,25));
label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); label("$P$",P,SE);
label("$z$",P--Z,W); label("$y$",P--X,S); label("$x$",P--Y,NE);</asy>
We label the altitudes from <math>P</math> to each of sides <math>\overline{AB}</math>, <math>\overline{BC}</math> and <math>\overline{AC}</math> <math>x</math>, <math>y</math> and <math>z</math> respectively. Since <math>\triangle ABC</math> is equilateral, we can say that <math>s=AB=BC=AC</math> WLOG. Therefore, <math>[ABP]=\dfrac{sx}{2}</math>, <math>[BCP]=\dfrac{sy}{2}</math> and <math>[ACP]=\dfrac{sz}{2}</math>. Since the area of a triangle is the product of its base and altitude, we also have <math>[ABC]=\dfrac{as}{2}</math>. However, the area of <math>\triangle ABC</math> can also be expressed as <math>[ABC]=[ABP]+[BCP]+[ACP]=\dfrac{sx}{2}+\dfrac{sy}{2}+\dfrac{sz}{2}=\dfrac{s}{2}(x+y+z)</math>. Therefore, <math>\dfrac{s}{2}(x+y+z)=\dfrac{s}{2}(a)</math>, so <math>x+y+z=a</math>, which means the sum of the altitudes from any point within the triangle is equal to the altitude from the vertex of a triangle.

Revision as of 19:42, 9 November 2012

The Viviani's Theorem states that for an equilateral triangle, the sum of the altitudes from any point in the triangle is equal to the altitude from a vertex of the triangle to the other side.

Proof

Let $\triangle ABC$ be an equilateral triangle and $P$ be a point inside the triangle. [asy] pair A,B,C,P,X,Y,Z; real s=12*sqrt(3); A=(0,0); C=(s,0); B=(s/2,s/2*sqrt(3)); P=(9.5,7); X= foot(P,B,C); Y=foot(P,A,B); Z=foot(P,A,C); draw(A--B--C--cycle); draw(P--Z); draw(P--Y); draw(P--X); draw(P--A); draw(P--B); draw(P--C); draw(rightanglemark(P,X,B,25)); draw(rightanglemark(P,Z,C,25)); draw(rightanglemark(P,Y,A,25));  label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); label("$P$",P,SE); label("$z$",P--Z,W); label("$y$",P--X,S); label("$x$",P--Y,NE);[/asy] We label the altitudes from $P$ to each of sides $\overline{AB}$, $\overline{BC}$ and $\overline{AC}$ $x$, $y$ and $z$ respectively. Since $\triangle ABC$ is equilateral, we can say that $s=AB=BC=AC$ WLOG. Therefore, $[ABP]=\dfrac{sx}{2}$, $[BCP]=\dfrac{sy}{2}$ and $[ACP]=\dfrac{sz}{2}$. Since the area of a triangle is the product of its base and altitude, we also have $[ABC]=\dfrac{as}{2}$. However, the area of $\triangle ABC$ can also be expressed as $[ABC]=[ABP]+[BCP]+[ACP]=\dfrac{sx}{2}+\dfrac{sy}{2}+\dfrac{sz}{2}=\dfrac{s}{2}(x+y+z)$. Therefore, $\dfrac{s}{2}(x+y+z)=\dfrac{s}{2}(a)$, so $x+y+z=a$, which means the sum of the altitudes from any point within the triangle is equal to the altitude from the vertex of a triangle.