2012 USAMO Problems/Problem 5: Difference between revisions
No edit summary |
|||
| Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
By the [[Law_of_Sines|sine law]] on triangle <math>AB'P</math>, | |||
<cmath>\frac{AB'}{\sin \angle APB'} = \frac{AP}{\sin \angle AB'P},</cmath> | |||
so | |||
<cmath>AB' = AP \cdot \frac{\sin \angle APB'}{\sin \angle AB'P}.</cmath> | |||
<asy> | |||
import graph; | |||
import geometry; | |||
unitsize(0.5 cm); | |||
pair[] A, B, C; | |||
pair P, R; | |||
A[0] = (2,12); | |||
B[0] = (0,0); | |||
C[0] = (14,0); | |||
P = (4,5); | |||
R = 5*dir(70); | |||
A[1] = extension(B[0],C[0],P,reflect(P + R,P - R)*(A[0])); | |||
B[1] = extension(C[0],A[0],P,reflect(P + R,P - R)*(B[0])); | |||
C[1] = extension(A[0],B[0],P,reflect(P + R,P - R)*(C[0])); | |||
draw((P - R)--(P + R),red); | |||
draw(A[1]--B[1]--C[1]--cycle,blue); | |||
draw(A[0]--B[0]--C[0]--cycle); | |||
draw(A[0]--P); | |||
draw(B[0]--P); | |||
draw(C[0]--P); | |||
draw(P--A[1]); | |||
draw(P--B[1]); | |||
draw(P--C[1]); | |||
draw(A[1]--B[0]); | |||
draw(A[1]--B[0]); | |||
label("$A$", A[0], N); | |||
label("$B$", B[0], S); | |||
label("$C$", C[0], SE); | |||
dot("$A'$", A[1], SW); | |||
dot("$B'$", B[1], NE); | |||
dot("$C'$", C[1], W); | |||
dot("$P$", P, SE); | |||
label("$\gamma$", P + R, N); | |||
</asy> | |||
Similarly, | |||
<cmath> | |||
\begin{align*} | |||
B'C &= CP \cdot \frac{\sin \angle CPB'}{\sin \angle CB'P}, \\ | |||
CA' &= CP \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P}, \\ | |||
A'B &= BP \cdot \frac{\sin \angle BPA'}{\sin \angle BA'P}, \\ | |||
BC' &= BP \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P}, \\ | |||
C'A &= AP \cdot \frac{\sin \angle APC'}{\sin \angle AC'P}. | |||
\end{align*} | |||
</cmath> | |||
Hence, | |||
<cmath> | |||
\begin{align*} | |||
&\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} \\ | |||
&= \frac{\sin \angle APB'}{\sin \angle AB'P} \cdot \frac{\sin \angle CB'P}{\sin \angle CPB'} \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P} \cdot \frac{\sin \angle BA'P}{\sin \angle BPA'} \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P} \cdot \frac{\sin \angle AC'P}{\sin \angle APC'}. | |||
\end{align*} | |||
</cmath> | |||
Since angles <math>\angle AB'P</math> and <math>\angle CB'P</math> are supplementary or equal, depending on the position of <math>B'</math> on <math>AC</math>, | |||
<cmath>\sin \angle AB'P = \sin \angle CB'P.</cmath> | |||
Similarly, | |||
<cmath> | |||
\begin{align*} | |||
\sin \angle CA'P &= \sin \angle BA'P, \\ | |||
\sin \angle BC'P &= \sin \angle AC'P. | |||
\end{align*} | |||
</cmath> | |||
By the reflective property, <math>\angle APB'</math> and <math>\angle BPA'</math> are supplementary or equal, so | |||
<cmath>\sin \angle APB' = \sin \angle BPA'.</cmath> | |||
Similarly, | |||
<cmath> | |||
\begin{align*} | |||
\sin \angle CPA' &= \sin \angle APC', \\ | |||
\sin \angle BPC' &= \sin \angle CPB'. | |||
\end{align*} | |||
</cmath> | |||
Therefore, | |||
<cmath>\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} = 1,</cmath> | |||
so by [[Menelaus'_Theorem|Menelaus's theorem]], <math>A'</math>, <math>B'</math>, and <math>C'</math> are collinear. | |||
==See also== | ==See also== | ||
Revision as of 09:13, 26 April 2012
Problem
Let
be a point in the plane of triangle
, and
a line passing through
. Let
,
,
be the points where the reflections of lines
,
,
with respect to
intersect lines
,
,
, respectively. Prove that
,
,
are collinear.
Solution
By the sine law on triangle
,
so
Similarly,
Hence,
Since angles
and
are supplementary or equal, depending on the position of
on
,
Similarly,
By the reflective property,
and
are supplementary or equal, so
Similarly,
Therefore,
so by Menelaus's theorem,
,
, and
are collinear.
See also
| 2012 USAMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||