Art of Problem Solving

1966 IMO Problems/Problem 4: Difference between revisions

Chengbin (talk | contribs)
Chengbin (talk | contribs)
Line 3: Line 3:
== Solution ==
== Solution ==


Assume that <math>\frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^{n}x}}=\cot{x}-\cot{2^{n}x}</math> is true, then we use <math>n=1</math> and get \cot x - \cot 2x = \frac {1}{\sin 2x}.
Assume that <math>\frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^{n}x}}=\cot{x}-\cot{2^{n}x}</math> is true, then we use <math>n=1</math> and get <math>\cot x - \cot 2x = \frac {1}{\sin 2x}</math>.


First, we prove <math>\cot x - \cot 2x = \frac {1}{\sin 2x}</math>
First, we prove <math>\cot x - \cot 2x = \frac {1}{\sin 2x}</math>

Revision as of 15:08, 27 September 2010

I can't add latex code on this page. Somebody add it for me.

Solution

Assume that $\frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^{n}x}}=\cot{x}-\cot{2^{n}x}$ is true, then we use $n=1$ and get $\cot x - \cot 2x = \frac {1}{\sin 2x}$.

First, we prove $\cot x - \cot 2x = \frac {1}{\sin 2x}$

LHS=$\frac{\cos x}{\sin x}-\frac{\cos 2x}{\sin 2x}$

$= \frac{2\cos^2 x}{2\cos x \sin x}-\frac{2\cos^2 x -1}{\sin 2x}$

$=\frac{2\cos^2 x}{\sin 2x}-\frac{2\cos^2 x -1}{\sin 2x}$

$=\frac {1}{\sin 2x}$

Using the above formula, we can rewrite the original series as

$\cot x - \cot 2x + \cot 2x - \cot 4x + \cot 4x \cdot \cdot \cdot + \cot 2^{n-1} x - \cot 2^n x$

Which gives us the desired answer of $\cot x - \cot 2^n x$