2007 AMC 12B Problems/Problem 20: Difference between revisions
→Solution: fix |
m on 2nd thought, maybe not |
||
| Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
{{incomplete|solution}} | |||
<!-- <center><asy> | |||
pathpen = linewidth(0.7); | |||
real a = 3, b = 1, c = 9, d = 3; | |||
D((0,c) -- ((d-c)/(a-b),(a*d-b*c)/(a-b)) -- (0,d) -- ((c-d)/(a-b),(b*c-a*d)/(a-b)) -- cycle); | |||
D((0,c) -- ((-d-c)/(a-b),(-a*d-b*c)/(a-b)) -- (0,-d) -- ((c+d)/(a-b),-(-a*d-b*c)/(a-b)) -- cycle); | |||
</asy></center> --> | |||
Plotting the parallelogram on the coordinate plane, the 4 corners are at <math>(0,c),(0,d),\left(\frac{d-c}{a-b},\frac{ad-bc}{a-b}\right),\left(\frac{c-d}{a-b},\frac{bc-ad}{a-b}\right)</math>. Because <math>72= 4\cdot 18</math>, we have that <math>4(c-d)\left(\frac{c-d}{a-b}\right) = (c+d)\left(\frac{c+d}{a-b}\right)</math> or that <math>2(c-d)=c+d</math>, which gives <math>c=3d</math> (consider a [[homothety]], or dilation, that carries the first parallelogram to the second parallelogram; because the area increases by <math>4\times</math>, it follows that the stretch along the diagonal is <math>2\times</math>). The area of triangular half of the parallelogram on the right side of the y-axis is given by <math>9 = \frac{1}{2} (c-d)\left(\frac{d-c}{a-b}\right)</math>, so substituting <math>c = 3d</math>: | Plotting the parallelogram on the coordinate plane, the 4 corners are at <math>(0,c),(0,d),\left(\frac{d-c}{a-b},\frac{ad-bc}{a-b}\right),\left(\frac{c-d}{a-b},\frac{bc-ad}{a-b}\right)</math>. Because <math>72= 4\cdot 18</math>, we have that <math>4(c-d)\left(\frac{c-d}{a-b}\right) = (c+d)\left(\frac{c+d}{a-b}\right)</math> or that <math>2(c-d)=c+d</math>, which gives <math>c=3d</math> (consider a [[homothety]], or dilation, that carries the first parallelogram to the second parallelogram; because the area increases by <math>4\times</math>, it follows that the stretch along the diagonal is <math>2\times</math>). The area of triangular half of the parallelogram on the right side of the y-axis is given by <math>9 = \frac{1}{2} (c-d)\left(\frac{d-c}{a-b}\right)</math>, so substituting <math>c = 3d</math>: | ||
<center><cmath> | <center><cmath> | ||
\frac{1}{2} (c-d)\left(\frac{c-d}{a-b}\right) &= 9 \\ | \frac{1}{2} (c-d)\left(\frac{c-d}{a-b}\right) &= 9 \quad \Longrightarrow \quad 2d^2 &= 9(a-b) | ||
2d^2 &= 9(a-b) | |||
\end{align*}</cmath></center> | \end{align*}</cmath></center> | ||
Thus <math>3|d</math>, and we verify that <math>d = 3</math>, <math>a-b = 2 \Longrightarrow a = 3, b = 1</math> will give us a minimum value for <math>a+b+c+d</math>. Then <math>a+b+c+d = 3 + 1 + 9 + 3 = 16\ \mathbf{(D)}</math>. | Thus <math>3|d</math>, and we verify that <math>d = 3</math>, <math>a-b = 2 \Longrightarrow a = 3, b = 1</math> will give us a minimum value for <math>a+b+c+d</math>. Then <math>a+b+c+d = 3 + 1 + 9 + 3 = 16\ \mathbf{(D)}</math>. | ||
Revision as of 23:14, 24 February 2009
Problem
The parallelogram bounded by the lines
,
,
, and
has area
. The parallelogram bounded by the lines
,
,
, and
has area
. Given that
,
,
, and
are positive integers, what is the smallest possible value of
?
Solution
Template:Incomplete
Plotting the parallelogram on the coordinate plane, the 4 corners are at
. Because
, we have that
or that
, which gives
(consider a homothety, or dilation, that carries the first parallelogram to the second parallelogram; because the area increases by
, it follows that the stretch along the diagonal is
). The area of triangular half of the parallelogram on the right side of the y-axis is given by
, so substituting
:
\[\frac{1}{2} (c-d)\left(\frac{c-d}{a-b}\right) &= 9 \quad \Longrightarrow \quad 2d^2 &= 9(a-b)
\end{align*}\] (Error compiling LaTeX. Unknown error_msg)Thus
, and we verify that
,
will give us a minimum value for
. Then
.
See also
| 2007 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 21 |
Followed by Problem 23 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |