1987 IMO Problems/Problem 2: Difference between revisions
Archimedes1 (talk | contribs) |
|||
| Line 33: | Line 33: | ||
Thus we have proven that <math>[AKNM]=[ABC]</math>. | Thus we have proven that <math>[AKNM]=[ABC]</math>. | ||
==Solution 2== | |||
Clearly, <math>AKLM</math> is a kite, so its diagonals are perpendicular. Furthermore, we have triangles <math>ABN</math> and <math>ALC</math> similar because two corresponding angles are equal. | |||
Hence, we have <math>[AKNM] = \frac{1}{2} AN \cdot KM = \frac{1}{2} \frac{AB \cdot AC}{AL} \cdot KM.</math> | |||
But in (right) triangle <math>AKL</math>, we have <math><LAB = <A/2</math>. Furthermore, if <math>Q</math> is the intersection of diagonals <math>AL</math> and <math>KM</math> we have <math>Q</math> the midpoint of <math>KM</math> and <math>KQ</math> an altitude of <math>AKL</math>, so | |||
<cmath>\frac{KM}{2} = \frac{AK \cdot KL}{AL} = \frac{AL \sin <A/2 \cdot AL \cos <A/2}{AL} = \frac{AL \sin <A}{2},</cmath> | |||
so <math>\frac{KM}{AL} = \sin <A</math>. Hence <cmath>[AKNM] = \frac{1}{2} \frac{AB \cdot AC}{AL} \cdot KM = \frac{1}{2} AB \cdot AC \sin <A = [ABC],</cmath> as desired. | |||
==See also== | ==See also== | ||
Revision as of 14:33, 21 September 2014
Problem
In an acute-angled triangle
the interior bisector of the angle
intersects
at
and intersects the circumcircle of
again at
. From point
perpendiculars are drawn to
and
, the feet of these perpendiculars being
and
respectively. Prove that the quadrilateral
and the triangle
have equal areas.
Solution
We are to prove that
or equivilently,
. Thus, we are to prove that
. It is clear that since
, the segments
and
are equal. Thus, we have
since cyclic quadrilateral
gives
. Thus, we are to prove that
From the fact that
and that
is iscoceles, we find that
. So, we have
. So we are to prove that
We have
,
,
,
,
, and so we are to prove that
We shall show that this is true: Let the altitude from
touch
at
. Then it is obvious that
and
and thus
.
Thus we have proven that
.
Solution 2
Clearly,
is a kite, so its diagonals are perpendicular. Furthermore, we have triangles
and
similar because two corresponding angles are equal.
Hence, we have
But in (right) triangle
, we have
. Furthermore, if
is the intersection of diagonals
and
we have
the midpoint of
and
an altitude of
, so
so
. Hence
as desired.
See also
| 1987 IMO (Problems) • Resources | ||
| Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
| All IMO Problems and Solutions | ||