Art of Problem Solving

2000 AMC 10 Problems/Problem 9: Difference between revisions

5849206328x (talk | contribs)
mNo edit summary
5849206328x (talk | contribs)
Line 1: Line 1:
==Problem==
==Problem==
If <math>|x-2|=p</math>, where <math>x<2</math>, then <math>x-p=</math>
<math>\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ 2 \qquad\mathrm{(C)}\ 2-2p \qquad\mathrm{(D)}\ 2p-2 \qquad\mathrm{(E)}\ |2p-2|</math>


==Solution==
==Solution==

Revision as of 21:52, 8 January 2009

Problem

If $|x-2|=p$, where $x<2$, then $x-p=$

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ 2 \qquad\mathrm{(C)}\ 2-2p \qquad\mathrm{(D)}\ 2p-2 \qquad\mathrm{(E)}\ |2p-2|$

Solution

$|x-2|=p$

$x<2$, so $2-x=p$.

$x+p=2$.

$x-p=2-2p$.

$\boxed{\text{C}}$

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions