Art of Problem Solving

2025 AMC 12A Problems/Problem 18: Difference between revisions

Silverrush (talk | contribs)
m added stuff; will add solution later
Hellopeople1234 (talk | contribs)
Line 4: Line 4:
<imath>\textbf{(A)}~36 \qquad \textbf{(B)}~84 \qquad \textbf{(C)}~186 \qquad \textbf{(D)}~336 \qquad \textbf{(E)}~486</imath>
<imath>\textbf{(A)}~36 \qquad \textbf{(B)}~84 \qquad \textbf{(C)}~186 \qquad \textbf{(D)}~336 \qquad \textbf{(E)}~486</imath>
== Solution 1 ==
== Solution 1 ==
let 0<=x<y<z<=8;
x cannot be 0 because it makes xy>z --> 0>z;
x cannot be 1 because it makes xy>z ---> y>z;
x=2, y=3, z can be 4, 5 but not others;
x=2, y=4, z can be 5, 6, 7;
x=2, y=5, z can be 6, 7, 8;
x=2, y=6, z can be 7, 8;
x=2, y=7, z can be 8;
for x=2, total 11 cases;
similarly, for x=3,y=4, 5, 6, 7, total 10 cases; for x=4, y =5, 6, 7, total 6 cases; x=5, y=6, 7, 3 cases; x=6, y=7, z=8 1 cases;
total = 11 + 10 +6 +3 +1 = 31. permutate x, y, z for ordered triple, it is 31*6=186, C.

Revision as of 17:17, 6 November 2025

Problem 19

How many ordered triples $(x, y, z)$ of different positive integers less than or equal to $8$ satisfy $xy > z$, $xz > y$, and $yz > x$?

$\textbf{(A)}~36 \qquad \textbf{(B)}~84 \qquad \textbf{(C)}~186 \qquad \textbf{(D)}~336 \qquad \textbf{(E)}~486$

Solution 1

let 0<=x<y<z<=8; x cannot be 0 because it makes xy>z --> 0>z; x cannot be 1 because it makes xy>z ---> y>z;

x=2, y=3, z can be 4, 5 but not others; x=2, y=4, z can be 5, 6, 7; x=2, y=5, z can be 6, 7, 8; x=2, y=6, z can be 7, 8; x=2, y=7, z can be 8; for x=2, total 11 cases;

similarly, for x=3,y=4, 5, 6, 7, total 10 cases; for x=4, y =5, 6, 7, total 6 cases; x=5, y=6, 7, 3 cases; x=6, y=7, z=8 1 cases;

total = 11 + 10 +6 +3 +1 = 31. permutate x, y, z for ordered triple, it is 31*6=186, C.