Art of Problem Solving

2025 AMC 12B Problems/Problem 1: Difference between revisions

Ilikemath247365 (talk | contribs)
Replaced content with "Please do not post false problems."
Tag: Replaced
Line 1: Line 1:
==Problem==
Please do not post false problems.
 
What is the value of <math>\log_2({1+\sqrt{2}+\sqrt{3}})+\log_2({1+\sqrt{2}-\sqrt{3}})</math>?
 
<math>\textbf{(A)}~1\qquad\textbf{(B)}~\frac{3}{2}\qquad\textbf{(C)}~2\qquad\textbf{(D)}~\frac{5}{2}\qquad\textbf{(E)}~3</math>
 
==Solution==
 
By log properties, we have <math>\log_2({1+\sqrt{2}+\sqrt{3}})+\log_2({1+\sqrt{2}-\sqrt{3}}) = \log_2({(1 + \sqrt{2})^{2} - 3})</math> because of difference of squares. Next, we need to simplify <math>\log_2({1 + 2\sqrt{2} + 2 - 3}) = \log_2{2^{\frac{3}{2}}} = \frac{3}{2}</math> hence <math>\frac{3}{2}</math> is the answer.
 
==See also==
{{AMC12 box|year=2025|ab=B|before=First Problem|num-a=2}}
{{MAA Notice}}

Revision as of 10:58, 3 August 2025

Please do not post false problems.