2024 AMC 12B Problems/Problem 19: Difference between revisions
No edit summary |
No edit summary |
||
| Line 134: | Line 134: | ||
-Magnetoninja | -Magnetoninja | ||
==Solution 4== | |||
<cmath>[\triangle ABD] = \frac{[ADBECF]-[\triangle ABC]}{3} = \frac{91\sqrt{3}-49\sqrt{3}}{3} = 14\sqrt{3}</cmath> | |||
Let <math>M</math> be the intersection of <math>AB</math> and <math>DE</math>. Since <math>DMB</math> is isosceles and <math>\angle AMD = \theta</math>, we have <math>\angle ABD = \theta/2</math>. Also, all of the hexagon's internal angles are equal, so <math>\angle ADB = 120^\circ</math>. | |||
<asy> | |||
defaultpen(fontsize(13)); | |||
size(220); | |||
// Base points and rotation | |||
pair O = (0,0); | |||
pair A = dir(225); | |||
pair B = dir(-15); | |||
pair D = rotate(38.21, O)*A; | |||
pair E = rotate(38.21, O)*B; | |||
// Intersection point of AB and DE | |||
pair M = extension(A, B, D, E); | |||
// Triangle and segments | |||
defaultpen(fontsize(13)); | |||
size(220); | |||
// Base triangle from rotated figure | |||
pair O = (0,0); | |||
pair A = dir(225); | |||
pair B = dir(-15); | |||
pair D = rotate(38.21, O)*A; | |||
pair E = rotate(38.21, O)*B; | |||
// M is intersection of AB and DE | |||
pair M = extension(A, B, D, E); | |||
// Draw triangle and segment | |||
draw(A--B--D--cycle, black+0.9); | |||
draw(D--M, gray + dashed); | |||
// Draw angle theta at AMD | |||
real r = 0.1; | |||
path thetaArc = arc(M, r, degrees(D - M), degrees(A - M)); | |||
draw(thetaArc, gray); | |||
label("$\theta$", M + (r+0.1)*dir((degrees(D - M) + degrees(A - M))/2), gray); | |||
// Draw congruence ticks on MB and MD | |||
pair u1 = unit(B - M), u2 = unit(D - M); | |||
pair tick1a = midpoint(M--B) + rotate(90)*u1 * 0.04; | |||
pair tick1b = midpoint(M--B) + rotate(-90)*u1 * 0.04; | |||
pair tick2a = midpoint(M--D) + rotate(90)*u2 * 0.04; | |||
pair tick2b = midpoint(M--D) + rotate(-90)*u2 * 0.04; | |||
draw(tick1a--tick1b, gray); | |||
draw(tick2a--tick2b, gray); | |||
// Labels | |||
dot("$A$", A, dir(A)); | |||
dot("$B$", B, dir(B)); | |||
dot("$D$", D, dir(D)); | |||
dot("$M$", M, N); | |||
</asy> | |||
Using the side-angle-side area formula: | |||
<cmath>14\sqrt{3} = \frac{1}{2} \cdot 14 \cdot BD \cdot \sin\left(\frac{\theta}{2}\right) \Rightarrow BD = \frac{2\sqrt{3}}{\sin(\theta/2)}.</cmath> | |||
Apply Law of Sines on <math>\triangle ABD</math> with <math>\angle DAB = 60^\circ - \theta/2</math>: | |||
<cmath>\frac{14}{\sin 120^\circ} = \frac{BD}{\sin(60^\circ - \theta/2)}</cmath> | |||
<cmath>\frac{28}{\sqrt{3}} = \frac{2\sqrt{3}}{\sin(\theta/2)\sin(60^\circ - \theta/2)}.</cmath> | |||
<cmath>\sin(\theta/2)\sin(60^\circ - \theta/2) = \frac{3}{14}.</cmath> | |||
Using trig identities: | |||
<cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot (\sin(60^\circ)\cos(\theta/2) - \sin(\theta/2)\cos(60^\circ)) = \frac{3}{14}</cmath> | |||
<cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2}\cos(\theta/2) - \frac{1}{2}\sin(\theta/2)\right) = \frac{3}{14}</cmath> | |||
<cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2} \sqrt{\frac{1+\cos(\theta)}{2}} - \frac{1}{2} \sqrt{\frac{1-\cos(\theta)}{2}} \right) = \frac{3}{14}</cmath> | |||
<cmath>\left(\frac{\sqrt{3}}{2}\sqrt{\frac{1-\cos^2(\theta)}{4}} - \frac{1}{2}\left(\frac{1-\cos(\theta)}{2}\right)\right) = \frac{3}{14}</cmath> | |||
<cmath>\frac{\sqrt{3}\sin\theta}{4} - \frac{(1-\cos\theta)}{4} = \frac{3}{14}</cmath> | |||
<cmath>\sqrt{3}\sin\theta + \cos\theta = \frac{13}{7}</cmath> | |||
<cmath>\cos\theta = \frac{13}{7} - \sqrt{3}\sin\theta.</cmath> | |||
Substitute into <math>\sin^2\theta + \cos^2\theta = 1</math>: | |||
<cmath>\left(\frac{13}{7} - \sqrt{3}\sin\theta\right)^2 + \sin^2\theta = 1.</cmath> | |||
<cmath>4\sin^2\theta - \frac{26\sqrt{3}}{7}\sin\theta + \frac{120}{49} = 0.</cmath> | |||
Solving: | |||
<cmath>\sin\theta = \frac{5\sqrt{3}}{14} \quad (\text{valid root}), \quad \cos\theta = \frac{11}{14} \Rightarrow \tan\theta = \frac{5\sqrt{3}}{11}.</cmath> | |||
<cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}</cmath> | |||
~sparkycat | |||
==Video Solution by SpreadTheMathLove== | ==Video Solution by SpreadTheMathLove== | ||
Revision as of 23:06, 22 July 2025
Problem 19
Equilateral
with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution 2
From
's side lengths of 14, we get
We let
And
The answer would be
Which area
=
And area
=
So we have that
Which means
Now,
can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be
. The area of the equilateral triangle is
. The area of one of the three smaller triangles, say
is
. Let
be the altitude of
, so if we extend
to point
where
, we get right triangle
. Note that the height
, computed given the area and side length
, so
.
so Pythag gives
. This means that
, so Pythag gives
. Let
and the midpoint of
be
so that
, so that Pythag on
gives
. Then
. Then
.
-Magnetoninja
Solution 4
Let
be the intersection of
and
. Since
is isosceles and
, we have
. Also, all of the hexagon's internal angles are equal, so
.
Using the side-angle-side area formula:
Apply Law of Sines on
with
:
Using trig identities:
Substitute into
:
Solving:
~sparkycat
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.